From 1 - 10 / 14
  • Geophysical responses, such as gravity anomalies, arise from variations in physical properties, such as density, in the subsurface. These physical properties are predominantly controlled by mineralogy. Chemical alteration varies the mineralogy of a rock, potentially producing a geophysical response due to the alteration. Physical property models can be calculated for numerical simulations of chemical alteration, such as reactive transport simulations; these physical properties allow the geophysical signatures of alteration to be calculated.

  • The first large scale projects for geological storage of carbon dioxide on the Australian mainland are likely to occur within sedimentary sequences that underlie or are within the Triassic Cretaceous Great Artesian Basin aquifer sequence. Recent national and state assessments have concluded that certain deep formations within the Great Artesian Basin show considerable geological suitability for the storage of greenhouse gases. These same formations contain trapped methane and naturally generated carbon dioxide stored for millions of years. In July 2010, the Queensland Government released exploration permits for Greenhouse Gas Storage in the Surat and Galilee basins. An important consideration in assessing the potential economic, environmental, health and safety risks of such projects is the potential impact carbon dioxide migrating out of storage reservoirs could have on overlying groundwater resources. The risk and impact of carbon dioxide migrating from a greenhouse gas storage reservoir into groundwater cannot be objectively assessed without an adequate knowledge of the natural baseline characteristics of the groundwater within these systems. Due to the phase behaviour of carbon dioxide, geological storage of carbon dioxide in the supercritical state requires depths greater than 800m, but there are few hydrogeochemical studies of these deeper aquifers in the prospective storage areas. Historical hydrogeochemical data were compiled from various State and Federal Government agencies. In addition, hydrogeochemical information has been compiled from thousands of petroleum well completion reports in order to obtain more information on the deeper aquifers, not typically used for agriculture or human consumption. The data were passed through a quality checking procedure to check for mud contamination and ascertain whether a representative sample had been collected. The large majority of the samples proved to be contaminated but a small selection passed the quality checking criteria.

  • The distribution of chemical elements at the Earth's surface is complex and reflects the geochemistry and mineralogy of the original substrate modified by environmental factors that include physical, chemical and biological processes over time. Geochemical data typically is illustrated in the form of horizontal maps or vertical cross-sections, where the composition of regolith, bedrock or any other material is represented. These are primarily point observations that frequently are interpolated to produce rasters of element distributions. Here we propose the application of environmental or covariate regression modelling to predict and better understand the controls on major and trace element geochemistry within the regolith. Available environmental covariate datasets (raster or vector) representing factors influencing regolith composition are intersected with the geochemical point data in a spatial statistical correlation model to develop a system of multiple linear correlations. The spatial resolution of the environmental covariates, which typically is much finer (e.g. ~90 m pixel) than that of geochemical surveys (e.g. 1 sample per 10 to 10,000 km2), carries over to the predictions. Therefore the derived predictive models of element concentrations take the form of continuous geochemical landscape representations that are much more informative than geostatistical interpolations. Environmental correlation is applied to the Sir Samuel 1:250 000 scale map sheet in Western Australia to produce distribution models of individual elements describing the geochemical composition of the regolith and exposed bedrock. As an example we model the distribution of two elements chromium and sodium. We show that the environmental correlation approach generates high resolution predictive maps that are statistically more accurate and effective than the popular ordinary kriging and inverse distance weighting interpolation methods. Furthermore, insights can be gained into the landscape processes controlling element concentration, distribution and mobility from analysis of the covariates used in the model. This modelling approach can be extended to groups of elements (indices), element ratios, isotopes or mineralogy over a range of scales and in a variety of environments.

  • An abstract outlining capabilities of GA's FreeGs system for geochemical modelling for 1st Russian-Swiss Seminar on "Methods for modelling of geochemical processes: algorithms, data prediction, experimental validation, and relevant applications"

  • Abstract The Palaeoproterozoic, from 2100 to 1800 Ma, is recognised as the third largest period of orogenic gold mineralization. In contrast to earlier Archean orogenic gold episodes which occur predominantly in greenstone terranes, supracrustal sedimentary rocks became increasingly important as hosts in the Palaeoproterozoic. Unusually iron-rich 1840 Ma marine mudstones in the Tanami region host one world class gold deposit and many other gold deposits. Fluid-rock modelling at 350°C suggest a strong correlation between gold grade and these iron-rich, fine-grained sedimentary rocks and suggest that gold may precipitate in the iron-rich sediments in the first stage of mineralization, before remobilization of the gold further enhances the grade of the deposit. New regional stratigraphic correlations for similar iron-rich rocks to those in the Tanami region are suggested with ~1860 Ma gold-bearing stratigraphy in the Pine Creek region and potentially with ~1860 Ma host rocks in the Tennant region. These Northern Australian Palaeoproterozoic iron-rich sedimentary rocks could be linked globally to similar aged iron-rich and gold-bearing sedimentary rocks in Homestake, U.S., Ghana, West Africa and elsewhere. From about 2400 to 1800 Ma the Palaeoproterozoic is also marked by the occurrence of mainly Superior-style BIF's, which are attributed to the progressive oxygenation of the deep oceans resulting in the global scrubbing of iron from the oceans. The high iron concentrations noted in pre-1800 Ma marine sediments in Northern Australia could also be related to this same process and help explain the anomalous concentration of orogenic Au deposits from 2100 to 1800 Ma.

  • S-type granites crop out extensively (>2500 km2) in the central and eastern parts of the Hodgkinson Province, north Queensland, Australia, forming two NW to NNW trending belts, outboard of an extensive belt of (mainly late Carboniferous) I-type granites. The S-type granites, which comprise muscovite-biotite syenogranite and monzogranite, and rare granodiorite, have been subdivided in two major supersuites: the Whypalla and Cooktown Supersuites; and a number of minor suites - including the highly differentiated Wangetti and Mount Alto Suites. The S-type granites intrude a very extensive, siliciclastic flysch sequence (late Silurian? to earliest Carboniferous) that is isotopically evolved (e.g., Nd mostly -12.0 to -15.0 at 270 Ma), and generally too mature (too CaO poor) to produce S-type granites. Isotopic and chemical modeling show that although magma-mixing is permissible, the levels permissible (<ca 20-25% basaltic input), are not large enough to explain the signature of the S-type granite. Either more complex mixing models, e.g., crustal melts with a history of mixing, or the presence of more suitable metasedimentary source rocks at depth, is required. The latter is consistent with the (uncommon) presence within the eastern parts of the Hodgkinson Province of metasediments with isotopic signatures similar to the S-type granites. These provide strong support for more extensive such rocks at depth, consistent with other local geology and accretionary tectonic models for the region.

  • Fluid inclusion studies have been carried out on quartz veining from Jackson's Pit and Eva uranium mines and the Dianne and St Barb copper prospects in the Westmoreland region. Four types of inclusions have been observed. Type A, vapour-rich inclusions, contain 30 - 100 vol.% vapour with varying amounts of CO2 ± N2 ± CH4. Type B, liquid-rich inclusions, contain up to 30 vol.% vapour. Type C inclusions are liquid-only. Type D, three-phase (vapour + liquid + solid) liquid-rich inclusions, contain a small daughter crystal. Type A, vapour-rich inclusions and some Type B, liquid-rich inclusions homogenised over the range 171 to 385°C. Other Type B and Type D inclusions typically homogenised between 100 and 240°C with a mode around 120°C, while the presence of liquid-only inclusions suggests trapping at temperatures below 50°C. This may indicate three phases of fluid flow in the region with progressively cooling fluids. Eutectic melting temperatures as low as -79.8ºC in Type B and C inclusions suggest the presence of CaCl2 and other salts in the fluids. Final ice meeting temperatures for Type B and C inclusions fall into two groups. The first group has final melting temperatures below -10ºC while the second group shows final meeting above -10ºC and more typically close to 0ºC indicating the presence of low salinity fluids. This suggests mixing between saline basinal fluids and low salinity meteoric fluids that continued down to temperatures below 50°C.

  • This report is a summary of information collected between November, 1948 and July, 1949 in the course of visits to the United Kingdom and the United States. The main subjects investigated were the complete gasification of coal, particularly in respect of its application to Victorian brown coal, the production of oil by synthesis and the production and refining of shale oil. Information was sought on a considerable number of other interests in the field of fuel technology as the opportunity offered. The authorities consulted were invariably experts in their respective fields, and great care was taken to record their information accurately. The report is a summary of recent developments and not an exhaustive study of the subjects mentioned. A considerable mass of detail has been excluded but is available on record for further reference.

  • The present report provides a compilation of thermodynamic data for geologically relevant uranium species suitable for geochemical equilibrium calculations from low to moderate temperatures (up to 300°C). It also reports a set of diagrams displaying the solubility of key uranium ore minerals (uraninite, coffinite and carnotite) and the stability of uranium and vanadium complexes at temperatures between 25° and 300°C. Further, it discusses mass-balance calculations of fluid-rock reactions at temperatures up to 200°C relevant to understanding the behaviour of uranium in unconformity-related uranium and sediment-hosted stratiform copper-uranium deposits.