Western Australia
Type of resources
Keywords
Publication year
Topics
-
Vlaming Shelf reef polygons were manually digitized from multibeam echosounder datasets collected on marine survey GA0334 in March/April 2012. Reef areas were defined as exposed, hard substrate that are often raised above the surrounding seafloor. They were mapped using bathymetry and backscatter data along with bathymetric derivatives including; slope, hillshaded bathymetry and contours. Features were mapped at a scale of 1:10 000. This dataset is published with the permission of the CEO, Geoscience Australia.
-
Browse Shelf reef polygons were manually digitized from multibeam echosounder datasets collected on marine survey GA0345/GA0346/TAN1411 in October/November 2014. Reef areas were defined as exposed, hard substrate that are often raised above the surrounding seafloor. The continental shelf was defined using the 200 m depth contour. They were mapped using bathymetry and backscatter data along with bathymetric derivatives including; slope, hillshaded bathymetry and contours. Features were mapped at a scale of 1:10 000. This dataset is published with the permission of the CEO, Geoscience Australia.
-
The northern Houtman Sub-basin is an under-explored region of Australia’s western continental margin. It is located at the transition between the non-volcanic margin of the northern Perth Basin and the volcanic province of the Wallaby Plateau, and lies adjacent to the Wallaby-Zenith Transform Margin. In 2014-15, Geoscience Australia acquired new 2D seismic data (GA-349) across the northern Houtman Sub-basin to assess its hydrocarbon prospectivity. This study integrated interpretation of the recently acquired GA-349 survey, with Geoscience Australia’s existing regional interpretation of the Houtman and Abrolhos sub-basins, to develop a 2D structural and stratigraphic interpretation for the study area. As there are no wells in the northern Houtman sub-basin, the age and lithologies of the mapped sequences were derived from regional mapping, stratal relationships and seismic facies. The new data clearly images a large depocentre, including a much thicker Paleozoic section (up to 13 km) than previously recognised. Extending the length of the inboard part of northern sub-basin are a series of large half-graben (7-10 km thick), interpreted to have formed as a result of Permian rifting. Overlying these half-graben, and separated by an unconformity, is a thick succession (up to 6 km) interpreted to represent a subsequent late Permian to Early Jurassic phase of the thermal subsidence. A second phase of rifting started in the Early Jurassic and culminated in Early Cretaceous breakup. The sedimentary succession deposited during this phase of rifting is highly faulted and heavily intruded in the outboard part of the basin, adjacent to the Wallaby Saddle, where intrusive and extrusive complexes are clearly imaged on the seismic. In contrast to the southern part of the Houtman Sub-basin, which experienced rapid passive margin subsidence and regional tilting after the Valanginian breakup, the northern sub-basin remained mostly exposed sub-aerially until the Aptian while the Wallaby Zenith Fracture Zone continued to develop. Poster/Extended Abstract presented at the Australian Exploration Geoscience Conference (AEGC) 2018 (https://www.aig.org.au/events/first-australian-exploration-geoscience-conference/)
-
Refined wind vulnerability curves for residential houses in Western Australia. The dataset contains heuristic vulnerability curves for individual communities in WA, initially provided by Geoff Boughton (JCU), and modified by Martin Wehner (GA), in line with commentary from Geoff that the curves are representative of individual houses. The vulnerability would increase in a community situation due to debris generation from upwind houses. An additional curve for the reinforced masonry/concrete roof houses observed in Exmouth is also included.
-
<div>This dataset represents the second version of a compilation of borehole stratigraphic unit data on a national scale (Figure 1). It builds on the previous Australian Borehole Stratigraphic Units Compilation (ABSUC) Version 1.0 (Vizy & Rollet, 2023a) with additional new or updated stratigraphic interpretation on key boreholes located in Figure 2. Its purpose is to consolidate and standardise publicly accessible information from boreholes, including those related to petroleum, stratigraphy, minerals, and water. This compilation encompasses data from states and territories, as well as less readily available borehole logs and interpretations of stratigraphy.</div><div> </div><div>This study was conducted as part of the National Groundwater Systems (NGS) Project within the Australian Government's Exploring for the Future (EFTF) program. Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. More information is available at http://www.ga.gov.au/eftf and https://www.eftf.ga.gov.au/national-groundwater-systems.</div><div> </div><div>As our understanding of Australian groundwater systems expands across states and territories, including legacy data from the 1970s and recent studies, it becomes evident that there is significant geological complexity and spatial variability in stratigraphic and hydrostratigraphic units nationwide. Recognising this complexity, there is a need to standardise diverse datasets, including borehole location and elevation, as well as variations in depth and nomenclature of stratigraphic picks. This standardisation aims to create a consistent, continent-wide stratigraphic framework for better understanding groundwater system for effective long-term water resource management and integrated resource assessments.</div><div> </div><div>This continental-scale compilation consolidates borehole data from 53 sources, refining 1,117,693 formation picks to 1,010,483 unique records from 171,396 boreholes across Australia. It provides a consistent framework for interpreting various datasets, enhancing 3D aquifer geometry and connectivity. Each data source's reliability is weighted, prioritising the most confident interpretations. Geological units conform to the Australian Stratigraphic Units Database (ASUD) for efficient updates. Regular updates are necessary to accommodate evolving information. Borehole surveys and dip measurements are excluded. As a result, stratigraphic picks are not adjusted for deviation, potentially impacting true vertical depth in deviated boreholes.</div><div> </div><div>This dataset provides:</div><div>ABSUC_v2 Australian stratigraphic unit compilation dataset (ABSUC)</div><div>ABSUC_v2_TOP A subset of preferred top picks from the ABSUC_v2 dataset</div><div>ABSUC_v2_BASE A subset of preferred base picks from the ABSUC_v2 dataset</div><div>ABSUC_BOREHOLE_v2 ABSUC Borehole collar dataset</div><div>ASUD_2023 A subset of the Australia Stratigraphic Units Database (ASUD)</div><div> </div><div>Utilising this uniform compilation of stratigraphic units, enhancements have been made to the geological and hydrogeological surfaces of the Great Artesian Basin, Lake Eyre Basin and Centralian Superbasin. This compilation is instrumental in mapping various regional groundwater systems and other resources throughout the continent. Furthermore, it offers a standardised approach to mapping regional geology, providing a consistent foundation for comprehensive resource impact assessments.</div>
-
Carnarvon Shelf reef polygons were manually digitized from multibeam echosounder datasets collected on marine survey GA0308 in August/September 2008. Reef areas were defined as exposed, hard substrate that are often raised above the surrounding seafloor. They were mapped using bathymetry and backscatter data along with bathymetric derivatives including; slope, hillshaded bathymetry and contours. Features were mapped at a scale of 1:10 000. This dataset is published with the permission of the CEO, Geoscience Australia.
-
<div>The Yilgarn Craton of Western Australia represents one of the largest pieces of Precambrian crust on Earth, and a key repository of information on the Meso-Neoarchean period. Understanding the crustal, tectonic, thermal, and chemical evolution of the craton is critical in placing these events into an accurate geological context, as well as developing holistic tectonic models for the Archean Earth. In this study, we collected a large U-Pb (420 collated samples) and Hf isotopic (2163 analyses) dataset on zircon to investigate the evolution of the craton. These data provide strong evidence for a Hadean-Eoarchean origin for the Yilgarn Craton from mafic crust at ca. 4000 Ma. This ancient cratonic nucleus was subsequently rifted, expanded and reworked by successive crustal growth events at ca. 3700 Ma, ca. 3300 Ma, 3000-2900 Ma, 2825-2800 Ma, and ca. 2730-2620 Ma. The <3050 Ma crustal growth events correlate broadly with known komatiite events, and patterns of craton evolution, revealed by Hf isotope time-slice mapping, image the periodic break-up of the Yilgarn proto-continent and the formation of rift-zones between the older crustal blocks. Crustal growth and new magmatic pulses were focused into these zones and at craton margins, resulting in continent growth via internal (rift-enabled) expansion, and peripheral (crustal extraction at craton margins) magmatism. Consequently, we interpret these major geodynamic processes to be analogous to plume-lid tectonics, where the majority of tonalite-trondhjemite-granodiorite (TTG) felsic crust, and later granitic crust, was formed by reworking of hydrated mafic rocks and TTGs, respectively, via a combination of infracrustal and/or drip-tectonic settings. While this process of crust formation and evolution is not necessarily restricted to a specific geodynamic system, we find limited direct evidence that subduction-like processes formed a major tectonic component, aside from re-docking the Narryer Terrane to the craton at ca. 2740 Ma. Overall, these 'rift-expansion' and 'craton margin' crustal growth process led to an intra-cratonic architecture of younger, juvenile terranes located internal and external to older, long-lived, reworked crustal blocks. This framework provided pathways that localized later magmas and fluids, driving the exceptional mineral endowment of the Yilgarn Craton.</div> This Abstract/Poster was submitted to & presented at the 2023 6th International Archean Symposium (6IAS) 25 - 27 July (https://6ias.org/)
-
CGG Aviation (now Xcalibur Multiphysics) collected airborne gravity data in the Kidson area covering parts of the Gibson and Great Sandy Deserts in central Western Australia as part of a collaborative project between Geoscience Australia (GA) and the Geological Survey of Western Australia (GSWA). The aim of the project was to collect airborne gravity gradiometry data in the region at 2500 m wavelength resolution to help characterise key undercover geological elements of the region. The survey consisted of a Main block and an Extension block. Data were acquired from North/South flight lines (Main block) and East-West flight lines (Extension block) with an average target ground clearance of 120m. Tie lines at 25,000m line spacing were flown only for the Main block. A total of 78,700 line kilometres of data were collected during the survey. <b>Survey details</b> Survey Name: Kidson WA airborne gravity gradiometer survey 2017 State/Territory: Western Australia Datasets Acquired: Airborne gravity gradiometer Geoscience Australia Project Number: Acquisition Start Date: July 21, 2017 Acquisition End Date: May 3, 2018 Number of blocks: 2 Flight line spacing: 2,500m Flight line direction: Area 1 - 180 deg/ NS; Area 2 - 270 deg/EW Tie line spacing: 25,000m Tie line direction: Area 1 only - 270 deg / EW Total distance flown: 78,700 line kilometres Nominal terrain clearance (above ground level): 120m Clearance method: Drape Aircraft type: 2 aircrafts with different Falcon AGG system installed - Cessna Grand Caravan 208B / Full spectrum Falcon system Kepler/Newton Data Acquisition: CGG Aviation Australia Pty Ltd Project Management: Geoscience Australia Quality Control: Dr Mark Dransfield contracted by Geoscience Australia Dataset Ownership: Western Australia and Geoscience Australia <b>Files included in this download</b> The original agreement with CGG Aviation Australia Pty Ltd (CGG) stated that gradient point located data was available for purchase on non-exclusive terms from CGG until 30 June 2027, after which date the gradient data would be made public. In July 2021, the terms of the agreement changed after Xcalibur Multiphysics acquired CGG Aviation Pty Ltd. Xcalibur authorised the release of the gradient data. A new final dataset and report was generated by Xcalibur and delivered to Geoscience Australia. This data release contains the gradient point located data. <b>1. Point-located Data / line data</b> ASEG-GDF2 and Geosoft GDB format with accompanying description and definition files. The sample frequency is 8Hz. <b>2. Grids</b> Datum: GDA2020 Projection: MGA 51 Grid cell size: 500m Formats: Geosoft GRD and ERMapper (.ers) with accompanying description files. <b>3. Reports</b> • Final survey logistic report delivered to Geoscience Australia by the survey contractor. • Kidson QC report from Dr Mark Dransfield The data from this Kidson airborne gravity gradiometry survey has been released and can be downloaded from the Geological Survey of Western Australia’s MAGIX platform at https://magix.dmirs.wa.gov.au and GeoVIEW.WA web mapping application at https://geoview.dmp.wa.gov.au/GeoView under reference number 71234.
-
<div>The Tanami–King Leopold survey was part of a collaborative research project between Geoscience Australia (GA) and the Geological Survey of Western Australia. Gravity data was collected at 5 km wavelength resolution with the purpose to help characterise key undercover geological elements of the region. The project area extends approximately from the Balgo Hills region near the border with the Northern Territory through to Derby in the west. The survey was conducted by Thomson Aviation Pty Ltd with a GT-2A gravimeter and managed by GA. A total of 25,869.36 line km of data were acquired over an area of 58,040 km².</div><div> </div><div><strong>Survey details</strong></div><div>Survey Name: Tanami-King Leopold WA airborne gravity survey 2017</div><div>State/Territory: Western Australia (WA)</div><div>Datasets Acquired: Airborne gravity</div><div> Geoscience Australia Project Number: P1291B</div><div> Acquisition Start Date: June 16, 2017</div><div> Acquisition End Date: August 12, 2017</div><div> Flight line spacing: 2.5 km</div><div> Flight line direction: 180deg / NS</div><div> Tie line spacing: 25km</div><div> Tie line direction: 270 deg / EW</div><div>Total line kilometers: 25,869.36</div><div> Nominal terrain clearance (above ground level): 477 m</div><div> Aircraft type: GippsAero GA-8 Airvan</div><div>Data Acquisition: Thomson Aviation </div><div> Project Management: Geoscience Australia</div><div> Quality Control: CMG Operations Pty Ltd and Geoscience Australia</div><div> Dataset Ownership: GSWA and Geoscience Australia</div><div> </div><div><strong>Files included in this download</strong></div><div>This data package release contains the final survey deliverables received from the contractor Thomson Aviation. Quality control and data processing services were provided by CMG Operations Pty Ltd and peer reviewed by Dr Jack McCubbine (Geoscience Australia).</div><div> </div><div>The horizontal datum and projection for all the data are GDA94 and MGA52, respectively.</div><div> </div><div><strong>1.</strong> <strong><em>Point-located Data / line data</em></strong></div><div>ASCII column XYZ and ASEG-GDF2 format with accompanying description and definition files.</div><div><br></div><div> <strong><em>2.Grids</em></strong> </div><div> </div><div>Datum: GDA94</div><div>Projection: MGA52</div><div>Grid cell size: 500m</div><div>Format: ERMapper (.ers)</div><div>Gravity datum: AAGD07. </div><div> </div><div>There are 24 gridded data supplied in ERMapper (.ers) format. The grid cell size is 500 metres. The gravity datum used is AAGD07. </div><div><br></div><div> <strong>3. Reports</strong> </div><div> • Final survey logistic report delivered to Geoscience Australia by the survey contractor: <em>TNC-TANAMI-FINAL-REPORT.pdf</em></div><div>• QC report from the peer reviewer of the data package: <em>Tanami King Leopold QC report.pdf</em></div><div> </div><div>The data from this Tanami King Leopold survey can also be downloaded from the Geological Survey of Western Australia’s MAGIX platform at https://magix.dmirs.wa.gov.au and GeoVIEW.WA web mapping application at https://geoview.dmp.wa.gov.au/GeoView under reference number 71200. </div><div><br></div>
-
<div>An airborne gravity survey was conducted over the North East Canning area in the Kimberley region of Western Australia as a part of the Tanami-NE Canning Western Australia Airborne Gravity Survey 2017. The survey was part of a collaborative research project between Geoscience Australia (GA) and the Geological Survey of Western Australia. Gravity data was collected at 5 km wavelength resolution with the purpose to help characterise key undercover geological elements of the region. The survey was conducted by Thomson Aviation Pty Ltd with a GT-2A gravimeter and managed by Geoscience Australia. A total of 23,953.65 line km of data were acquired over an area of 53,346 km².</div><div><strong>Survey details</strong></div><div>Survey Name: Tanami North East Canning Airborne gravity survey</div><div>State/Territory: Western Australia (WA)</div><div>Datasets Acquired: Airborne gravity</div><div> Geoscience Australia Project Number: P1291A</div><div> Acquisition Start Date: 17 August 2017</div><div> Acquisition End Date: 15 November 2017</div><div> Flight line spacing: 2.5 km</div><div> Flight line direction: 180deg / NS</div><div> Tie line spacing: 25km</div><div> Tie line direction: 270 deg / EW</div><div>Total line kilometers: 23,953.65</div><div> Nominal terrain clearance (above ground level): 710 m</div><div> Aircraft model: GippsAero GA-8 Airvan</div><div>Data Acquisition: Thomson Aviation Pty Ltd</div><div> Project Management: Geoscience Australia</div><div> Quality Control: CMG Operations Pty Ltd and Geoscience Australia</div><div> Dataset Ownership: GSWA and Geoscience Australia</div><div><br></div><div><strong>Files included in this download </strong></div><div> </div><div>This data package release contains the final survey deliverables received from the contractor Thomson Aviation, with an initial QC by CMG Operations Pty Ltd, then peer reviewed by Dr Jack McCubbine (Geoscience Australia).</div><div> </div><div>The horizontal datum and projection for all the data are GDA94 and MGA51, respectively.</div><div> </div><div><strong>1.</strong> <strong><em>Point-located Data / line data</em></strong></div><div>ASCII column XYZ and ASEG-GDF2 format with accompanying description and definition files. </div><div><br></div><div> <strong><em>2.Grids</em></strong> –</div><div> Datum: GDA94</div><div>Projection: MGA51</div><div>Grid cell size: 500m</div><div>Format: ERMapper (.ers)</div><div>Gravity datum: AAGD07. </div><div> </div><div>There are 24 gridded data supplied in ERMapper (.ers) format. The grid cell size is 500 metres. The gravity datum used is AAGD07.</div><div><br></div><div> <strong>3. Reports</strong> </div><div> • Final survey logistic report delivered to Geoscience Australia by the survey contractor - <em>TNC-NE-CANNING-FINAL-REPORT.PDF</em></div><div>• QC report from the peer reviewing the data package: <em>Tanami - North East Canning QC report.pdf</em></div><div> </div><div>The data from this Tanami North East Canning survey can also be downloaded from the Geological Survey of Western Australia’s MAGIX platform at https://magix.dmirs.wa.gov.au and GeoVIEW.WA web mapping application at https://geoview.dmp.wa.gov.au/GeoView under reference number 71201. </div><div><br></div>