From 1 - 10 / 31
  • <div>A prerequisite to understanding the evolution and resource potential of a basin is to establish a reliable stratigraphic framework that enables the correlation of rock units across multiple depocentres. Establishing a stratigraphic model for the Adavale Basin is challenging due to its structurally complexity, lack of well penetration and its lateral changes in facies. Biostratigraphy appears broad-scale, and despite providing chronostratigraphic control for the Lower Devonian Gumbardo Formation when combined with U/Pb zircon geochronology, the rest of the Devonian succession is hampered by a lack of microfossil assemblages and their poor preservation. The aim of this study is to establish an independent chemostratigraphic correlation across the Adavale Basin using whole rock inorganic geochemistry. Within this study, a total of 1489 cuttings samples from 10 study wells were analysed by Inductively Coupled Plasma – Optical Emission Spectrometry and Inductively Coupled Plasma – Mass Spectrometry for whole rock geochemistry, in order to establish an independent chemostratigraphic zonation scheme. Based on key elemental ratios selected to reflect changes in feldspars, clay minerals and provenance, the Devonian-aged stratigraphy is characterised into four chemostratigraphic mega-sequences that encompass the Gumbardo Formation (Mega-sequence 1); the Eastwood Formation, the Log Creek Formation and the Lissoy Sandstone (Mega-sequence 2); the Bury Limestone and the Boree Salt formations (Mega-sequence 3); and the Etonvale and the Buckabie formations (Mega-sequence 4). These mega-sequences have been further subdivided into a series of chemostratigraphic sequences that can be correlated across the study wells, establishing a regional correlation framework.&nbsp;&nbsp;&nbsp;</div> This Paper was submitted/presented to the 2023 Australian Petroleum Production & Exploration Association (APPEA) Conference 15-18 May, (https://www.appea.com.au/appea-event/appea-conference-and-exhibition-2023/). <b>Journal Citation:</b> Riley David, Pearce Tim, Davidson Morven, Sirantoine Eva, Lewis Chris, Wainman Carmine (2023) Application of elemental chemostratigraphy to refine the stratigraphy of the Adavale Basin, Queensland. <i>The APPEA Journal</i><b> 63</b>, 207-219. https://doi.org/10.1071/AJ22108

  • <div>As part of the Data Driven Discoveries program, Geoscience Australia and the Geological Survey of Queensland collaborated to re-examine legacy well cuttings for a chemostratigraphic study. The aim was to identify opportunities for resource discovery in the Devonian-aged Adavale Basin in south-central Queensland by conducting a chemostratigraphic study to define regional stratigraphic correlations in a structurally complex basin with limited well penetrations. A total of 1,489 cutting samples were analysed for whole-rock geochemistry, as well as subsets of samples for whole-rock mineralogy and/or carbonate carbon and oxygen isotopes, from a whole-rock sample. The purpose was to establish new chemostratigraphic correlations across the basin independently, using data from 10 wells that sampled the Adavale Basin.</div>

  • <div>This report and associated data package provide a compilation of biostratigraphic summaries, borehole logs, and stratigraphic correlations for key boreholes across the Amadeus, Officer and Georgina basins in the Paleozoic‒Neoproterozoic Centralian Superbasin and in the underlying older Mesoproterozoic South Nicholson and southern McArthur basins, laying the groundwork for further studies. This study is part of Geoscience Australia’s National Groundwater Systems project in the Exploring for the Future (EFTF) program.</div><div>This work compiles publicly available borehole data to enhance regional stratigraphic understanding. Future studies should incorporate outcrop constraints, geophysical data, and additional geological dating, alongside collaboration with experts to validate sequence chronostratigraphic correlations. The stratigraphic framework aligns geological units with timeframes, enabling consistent interbasinal correlation to group aquifers and aquitards and sedimentary mapping across lithologies and time periods. This alignment supports the integration of hydrostratigraphic classifications, potentially revealing a more accurate model of water flow connectivity over geological time units. The compilation standardises borehole log interpretation and integrates geological and hydrogeological data, contributing to national databases, exploration guidance, improving groundwater understanding, and resource impact assessments for decision-making across various groundwater, energy and minerals disciplines.</div><div>The study builds on previous EFTF program work (e.g., Bradshaw et al., 2021; Khider et al., 2021; Carson et al., 2023; Anderson et al., 2023) and legacy studies across Australia, addressing challenges in understanding groundwater systems due to limited subsurface geology knowledge and fragmented data across jurisdictions. A nationally coordinated approach is essential, with well logs playing a key role in interpreting subsurface geology. The mapping process involves interpolating between surface outcrops and subsurface strata using borehole data, integrated with geophysical interpretations. The goal is to create a consistent 3D geological framework across time-equivalent basins and jurisdictions, enabling consistent groundwater system assessments and water flow path analysis at regional and national scales.</div><div>Although not intended to be a major re-interpretation of existing data, this stratigraphy review updates stratigraphic picks where necessary to ensure a consistent interpretation across the study area. This framework is based on the 13 Centralian Supersequences defined in Bradshaw et al. (2021). Using this framework, a revised stratigraphic chart is proposed in this study to align geological units across the Officer, Amadeus, and Georgina basins with the geological time scale (Gradstein et al., 2020), incorporating significant events, such as major glaciations, orogens and other tectonic movements. </div><div>This report aims to summarise the main biostratigraphic groups used, where they have been found, and provide a detailed list of the reports available. Existing biostratigraphic data from 142 boreholes in the Georgina, Amadeus, and Officer basins and underlying older southern McArthur and South Nicholson basins, were compiled to improve regional correlations, addressing data gaps identified in previous studies. Due to time constraints, only the five fossil groups found most in borehole data are included, such as trilobites, palynology, conodonts, stromatolites and small shelly fossils. However, outcrop data provides a much larger dataset and set of fossil groups and will need to be incorporated for future studies. Outcrop biostratigraphic data was excluded here, as the focus of this study was collating borehole data. Efforts were made to refine and update formation picks, ensuring consistency in correlations across larger areas. The correlation of geological units and their assignment to the corresponding 13 Centralian Supersequences in 272 key boreholes provide a foundational stratigraphic framework. Challenges include limited biostratigraphic data, diverse dating methods, and complex structural histories in the studied basins. Problems and inconsistencies in the input data or current interpretations are highlighted to suggest where further studies or investigations may be useful. Borehole correlation transects have been established across each of the basins (20 in total), displaying age data points along with formation picks and supersequence divisions. While these simple 2D transects may not capture the structural complexity of specific areas, they provide a broad overview of the interrelationships between different units across each basin.</div><div>The datasets compiled and used in this study are in Appendix A (Biostratigraphic data) and Appendix B (Borehole stratigraphic data).</div>

  • <div>The interpretation of AusAEM airborne electromagnetic (AEM) survey conductivity sections in the Canning Basin region delineates the geo-electrical features that correspond to major chronostratigraphic boundaries, and captures detailed stratigraphic information associated with these boundaries. This interpretation forms part of an assessment of the underground hydrogen storage potential of salt features in the Canning Basin region based on integration and interpretation of AEM and other geological and geophysical datasets. A main aim of this work was to interpret the AEM to develop a regional understanding of the near-surface stratigraphy and structural geology. This regional geological framework was complimented by the identification and assessment of possible near-surface salt-related structures, as underground salt bodies have been identified as potential underground hydrogen storage sites. This study interpreted over 20,000 line kilometres of 20&nbsp;km nominally line-spaced AusAEM conductivity sections, covering an area approximately 450,000 km2 to a depth of approximately 500&nbsp;m in northwest Western Australia. These conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This interpretation produced approximately 110,000 depth estimate points or 4,000 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for Geoscience Australia’s Estimates of Geological and Geophysical Surfaces database, the national repository for formatted depth estimate points. Despite these interpretations being collected to support exploration of salt features for hydrogen storage, they are also intended for use in a wide range of other disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. Therefore, these interpretations will benefit government, industry and academia interested in the geology of the Canning Basin region.</div>

  • <div>As part of the Exploring For The Future (EFTF) program, the Australia’s Future Energy Resources (AFER) project has investigated the potential of energy resource commodities in the Pedirka/western Eromanga basins region targeting conventional and unconventional hydrocarbons as well as evaluating the suitability of sedimentary sections to store carbon dioxide.</div><div>The interpretation of new biostratigraphic and reprocessed seismic data provided new insights into the regional geology of this previously explored region. The Permian, Triassic and Jurassic depositional history of the study area is largely recorded by extensive fluvial-lacustrine sediments, including changes from braided to meandering river systems and sustained periods of flood-plain environments in which thick sequences of coal-bearing strata developed. During the Cretaceous, expanding shallow marine environments were established in the western part of the Pedirka/western Eromanga region.</div><div>Age-control obtained from palynological analysis and the mapping of key seismic horizons yielded an improved understanding of the extent and character of unconformities which define breaks and changes in depositional processes. Results from new regional stratigraphic correlations initiated a comprehensive review of previously established basin definitions in the greater Pedirka/western Eromanga area. </div><div>While confirming the stacked nature of these basins which hold sedimentary records from the early Paleozoic to the Late Cretaceous, changes to stratigraphic basin boundaries have been applied to more correctly reflect the impact of unconformity related depositional breaks. As a result, the Lower and Middle Triassic Walkandi Formation is now assigned to the upper section of the Pedirka Basin, while the Upper Triassic Peera Peera Formation represents commencement of deposition in the western Eromanga Basin, thereby abandoning the recognition of the Simpson Basin as a separate Triassic depocenter.&nbsp;</div><div><br></div><div><br></div>

  • <div>The Canning Basin is a prospective hydrocarbon frontier basin and is unusual for having limited offshore seismic and well data in comparison with its onshore extent. In this study, seismic mapping was conducted to better resolve the continuity of 13 key stratigraphic units from onshore to offshore to delineate prospective offshore hydrocarbon-bearing units, and better understand the distribution of mafic igneous units that can compartmentalise migration pathways and influence heat flow. The offshore Canning Basin strata are poorly constrained in six wells with limited seismic coverage; hence data availability was bolstered by integrating data from the onshore portion of the basin and adjacent basins into a single 3D seismic stratigraphic model. This model integrates over 10 000 km of historical 2D seismic data and 23 exploration wells to allow mapping of key stratal surfaces. Mapped seismic horizons were used to construct isochores and regional cross-sections. Seven of the 13 units were mapped offshore for the first time, revealing that the onshore and offshore stratigraphy are similar, albeit with some minor differences, and mafic igneous units are more interconnected than previously documented whereby they may constitute a mafic magmatic province. These basin-scale maps provide a framework for future research and resource exploration in the Canning Basin. To better understand the basin’s geological evolution, tectonic history and petroleum prospectivity, additional well data are needed in the offshore Canning Basin where Ordovician strata have yet to be sampled.</div><div><br></div><div>C. T. G. Yule, J. Daniell, D. S. Edwards, N. Rollet & E. M. Roberts&nbsp;(2023).&nbsp;Reconciling the onshore/offshore stratigraphy of the Canning Basin and implications for petroleum prospectivity,&nbsp;Australian Journal of Earth Sciences,&nbsp;DOI:&nbsp;10.1080/08120099.2023.2194945</div> Appeared in Australian Journal of Earth Sciences Pages 691-715, Volume 70, 2023 - Issue 5.

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources.&nbsp;&nbsp;By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential.&nbsp;</div><div><br></div><div>The Paleo to Mesoproterozoic Birrindudu Basin is an underexplored frontier basin located in northwestern Northern Territory and northeastern Western Australia. The Birrindudu Basin is a region of focus for the second phase of the EFTF program (2020–2024) as it contains strata of similar age to the prospective McArthur Basin, South Nicholson region and Mount Isa Province, but remains comparatively poorly understood.&nbsp;Geoscience Australia, in collaboration with the Northern Territory Geological Survey is acquiring isotopic, geochronological, geochemical and geomechanical data from drillholes intersecting the Birrindudu Basin as part of phase two of EFTF. </div><div><br></div><div>This report presents results on selected rock samples from the Birrindudu Basin, conducted by the Mawson Analytical Spectrometry Services, University of Adelaide, under contract to Geoscience Australia. These results include:</div><div>1.&nbsp;&nbsp;&nbsp;&nbsp;Carbon (δ13C), oxygen (δ18O) and strontium (87Sr/86Sr) isotopes on carbonate-bearing samples, and</div><div>2.&nbsp;&nbsp;&nbsp;&nbsp;Trace element data on the leachates prepared for 87Sr/86Sr ratio analyses.</div>

  • <div>NDI Carrara&nbsp;1 is a 1751 m stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI). This campaign was a collaboration between Geoscience Australia under the Exploring for the Future program, together with MinEx CRC and the Northern Territory Geological Survey. It is the first drillhole to intersect Proterozoic rocks of the Carrara Sub-basin, a recently discovered depocentre in the South Nicholson region. The drill hole intersected ~625 m of the Paleozoic Georgina Basin, which overlies ~1120 m of Proterozoic carbonates, black shales and siliciclastic rocks, with hydrocarbon shows encountered in both the Paleozoic and Proterozoic sections. Following the completion of the drillhole, a comprehensive analytical program was carried out by Geoscience Australia to better understand the geology of the Carrara Sub-basin and its resource potential.</div><div><br></div><div>Here we present new high-resolution strontium (87Sr/86Sr), carbon (δ13C) and oxygen (δ18O) isotope data from carbonate bearing samples of the Paleozoic Georgina Basin and the Proterozoic Lawn Hill Formation intersected in NDI Carrara&nbsp;1. The aim of this data acquisition was to provide an improved understanding of the paleo-depositional environments and local/global chemostratigraphy trends recorded in the Carrara Sub-basin. </div><div><br></div><div>The majority of samples show significant alteration and thus caution should be exercised when using this data for assessing primary depositional conditions and contemporary sea-water chemistry. Despite the altered nature of most samples, samples belonging to undifferentiated Georgina Basin preserve 87Sr/86Sr ratios close to that of mid-Cambrian seawater, indicating the sampled intervals of Georgina Basin were likely connected to the global Cambrian ocean.&nbsp;Two small positive δ13C excursions (with positive shift in δ18O) within Georgina Basin samples may coincide with reported mid-Cambrian positive δ13C global marine excursions. </div><div><br></div><div>The least altered samples from the Proterozoic Lawn Hill Formation show more radiogenic 87Sr/86Sr values than the expected value of coeval mid-Proterozoic ocean at ~1600 Ma. These radiogenic 87Sr/86Sr values may reflect (i) influx of terrigenous material into a restricted basin with reduced interaction with the global ocean, or (ii) secondary overprinting by more radiogenic diagenetic fluids.</div> Abstract/Poster submitted and presented at 2023 Australian Earth Science Convention (AESC), Perth WA (https://2023.aegc.com.au/)

  • Geoscience Australia is leading a regional evaluation of potential mineral, energy and groundwater resources through the Exploring for the Future (EFTF) program. This stratigraphic assessment is part of the Onshore Basin Inventories project, and was undertaken to understand Devonian-aged depositional systems and stratigraphy in Queensland’s Adavale Basin. Such data are fundamental for any exploration activities. Maximising the use of existing well data can lead to valuable insights into the regional prospectivity of sedimentary basins. Data from 53 Adavale Basin wells have been used to evaluate subsurface stratigraphy, depositional environments and hydrocarbon shows across the basin. Stratigraphic data from 26 representative wells, where the well intersected at least three Devonian stratigraphic units, are used to generate chronostratigraphic time-space charts and two-dimensional well correlations within, and between, different (northern, north central, central, west central, east central and southern) parts of the basin. The primary objectives of the study are: • stratigraphic gap analysis to identify geological uncertainties and data deficiencies in the areas of interest, • integrate the well data with Geoscience Australia’s databases (i.e., Australian Stratigraphic Units, Time Scale, Geochronology, STRATDAT, RESFACS),the Geological Survey of Queensland’s Datasets and publicly available (published and unpublished) research data and information, • determine the lithostratigraphic unit tops, log and lithology characterisations, depositional facies, boundary criteria, spatial and temporal distribution and regional correlations, • integrate key biostratigraphic zones and markers with geochronological absolute age dates to generate a chronostratigraphic Time-Space Diagram of the basin. This work improves the understanding of the chronostratigraphic relationships across the Adavale Basin. The age of the sedimentary successions of the basin have been refined using geochronology, biostratigraphy and lithostratigraphic correlation. The chronostratigraphic and biozonation chart of the Adavale Basin has been updated and the stratigraphic, biostratigraphic and hydrocarbon shows datasets will be available for viewing and download via the Geoscience Australia Portal (https://portal.ga.gov.au/restore/15808dee-efcd-428e-ba5b-59b0106a83e3).

  • <div> A key issue for explorers in Australia is the abundant sedimentary and regolith cover obscuring access to underlying potentially prospective rocks. &nbsp;Multilayered chronostratigraphic interpretation of regional broad line-spaced (~20&nbsp;km) airborne electromagnetic (AEM) conductivity sections have led to breakthroughs in Australia’s near-surface geoscience. &nbsp;A dedicated/systematic workflow has been developed to characterise the thickness of cover and the depth to basement rocks, by delineating contact geometries, and by capturing stratigraphic units, their ages and relationships. &nbsp;Results provide a fundamental geological framework, currently covering 27% of the Australian continent, or approximately 2,085,000&nbsp;km2. &nbsp;Delivery as precompetitive data in various non-proprietary formats and on various platforms ensures that these interpretations represent an enduring and meaningful contribution to academia, government and industry.&nbsp;The outputs support resource exploration, hazard mapping, environmental management, and uncertainty attribution.&nbsp;This work encourages exploration investment, can reduce exploration risks and costs, helps expand search area whilst aiding target identification, and allows users to make well-informed decisions. Presented herein are some key findings from interpretations in potentially prospective, yet in some cases, underexplored regions from around Australia.&nbsp;</div> This abstract was submitted & presented to the 8th International Airborne Electromagnetics Workshop (AEM2023) (https://www.aseg.org.au/news/aem-2023)