DCD
Type of resources
Keywords
Publication year
Topics
-
<div>A multi-disciplinary program of geological and geophysical data collection and integration, focussed on the Delamerian Orogen, was undertaken as part of Geoscience Australia’s Exploring for the Future (EFTF) program and the Mineral Exploration Cooperative Research Centres (MinEx CRC) National Drilling Initiative (NDI). In this study, we integrate learnings from these data with existing geological and geophysical data to refine the basement geology of the Loch Lilly-Kars Belt, Lake Wintlow Belt and Wilcannia High. Our interpretation provides a revised geological framework for a frontier exploration region in the Delamerian Orogen. This product includes ESRI shape files and layer files, accompanying notes, and several appendices containing new detrital zircon U-Pb geochronology data from the map area as well as the broader Delamerian Orogen.</div>
-
Geoscience Australia, in collaboration with state governments, will be carrying out airborne electromagnetic (AEM) surveys in eastern South Australia and western NSW and Victoria during 2022. The Australian Government’s Exploring for the Future program, led by Geoscience Australia, is committed to supporting a strong economy, resilient society and sustainable environment for the benefit of Australians. At its heart, the program is about contributing to a sustainable, long-term future for Australia through an improved understanding of the nation’s mineral, energy and groundwater resource potential <p>
-
Geoscience Australia, in collaboration with state government agencies, has been collecting magnetotelluric (MT) data as part of the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) for several years. This program aims to map the electrical resistivity of the rock layers, at depths from ten kilometres to hundreds of kilometres, across the entire continent. AusLAMP sites are each about 55 km apart from each other. Locations are chosen in consultation with landholders and other stakeholders to minimise impacts and avoid disturbance.MT data is collected using sensors that record naturally occurring variations of the Earth’s magnetic and electric fields. The equipment does not produce or transmit and signals. After four to six weeks the equipment is retrieved and the site restored to its original condition.
-
<div>Poster for the Specialist Group in Geochemistry, Mineralogy & Petrology (SGGMP) conference in Yallingup WA in November 2022.</div><div><br></div>This Poster was presented to the 2022 Specialist Group in Geochemistry, Mineralogy and Petrology (SGGMP) Conference 7-11 November (https://gsasggmp.wixsite.com/home/biennial-conference-2021)
-
The AusArray program aims to install small temporary passive seismic stations every 200 km across Australia. The seismic stations will passively measure small natural vibrations that travel through the Earth to help scientists understand the distribution and composition of rocks beneath the ground. Seismometers are sensitive instruments used to measure small natural vibrations that travel through the Earth caused by earthquakes, waves breaking on the shore and even wind. The data collected are analysed to create a three-dimensional model of the Earth’s subsurface. Passive seismic data can be used to model the Earth‘s structure, which is used to infer the geological history and assess the resource potential and natural hazards of the region.
-
A poster presenting the new comprehensive compilation of geochemical data from a range of sample media has been undertaken across the highly prospective, but largely buried, Curnamona Province and cover sequences. The data has sourced from Geoscience Australia and State Geological Survey databases, company reports and academic studies. Each dataset has been run through rigorous quality control processes to correct or remove major data problems, remove duplicates, and standardise the data structures. This will be the go-to source for geochemical data in the Curnamona, enabling quick access to usable geochemical data, which is valuable to quickly feed into geochemical exploration and mineral modelling activities. Concurrently, the compilation is supporting Geoscience Australia’s ongoing research in the next two years into characterising geochemical baselines to enable more sensitive anomaly detection. This presentation was given to the 2022 Uncover Curnamona 2022 Conference 31 May - 2 June:<br>(https://www.gsa.org.au/common/Uploaded%20files/Events/Uncover%20Curnamona%202021/UC2022_short_program_A4_web%20(003).pdf)
-
<div>This data package contains interpretations of airborne electromagnetic (AEM) conductivity sections in the Exploring for the Future (EFTF) program’s Eastern Resources Corridor (ERC) study area, in south eastern Australia. Conductivity sections from 3 AEM surveys were interpreted to provide a continuous interpretation across the study area – the EFTF AusAEM ERC (Ley-Cooper, 2021), the Frome Embayment TEMPEST (Costelloe et al., 2012) and the MinEx CRC Mundi (Brodie, 2021) AEM surveys. Selected lines from the Frome Embayment TEMPEST and MinEx CRC Mundi surveys were chosen for interpretation to align with the 20 km line-spaced EFTF AusAEM ERC survey (Figure 1).</div><div>The aim of this study was to interpret the AEM conductivity sections to develop a regional understanding of the near-surface stratigraphy and structural architecture. To ensure that the interpretations took into account the local geological features, the AEM conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This approach provides a near-surface fundamental regional geological framework to support more detailed investigations. </div><div>This study interpreted between the ground surface and 500 m depth along almost 30,000 line kilometres of nominally 20 km line-spaced AEM conductivity sections, across an area of approximately 550,000 km2. These interpretations delineate the geo-electrical features that correspond to major chronostratigraphic boundaries, and capture detailed stratigraphic information associated with these boundaries. These interpretations produced approximately 170,000 depth estimate points or approximately 9,100 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div>Results from these interpretations provided support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The interpretations have applications in a wide range of disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. It is anticipated that these interpretations will benefit government, industry and academia with interest in the geology of the ERC region.</div>
-
A comprehensive compilation of rock, regolith and groundwater geochemistry across the Curnamona Province and overlying basins. This product is part of the Curnamona Geochemistry module of GA's Exploring for the Future program, which is seeking to understand geochemical baselines within the Curnamona Province to support mineral exploration under cover. Data is sourced from GA, CSIRO and state databases, and run through a quality control process to address common database issues (such as unit errors). The data has been separated by sample type and migrated into a standard data structure to make the data internally consistent. A central source for cleaned geochemical data in the same data format is a valuable resource for further research and exploration in the region.
-
The Upper Darling Floodplain AEM Survey is part of the Exploring for the Future Program. This scientific research is being carried out to obtain data that will enhance understanding of the groundwater resources of the upper Darling River region. This information will support future water resource management decision-making in the region.
-
<div>The Curnamona Province and overlying basins (herein referred to as the Broken Hill region) contain many discrete groundwater systems. These include sedimentary aquifers of the Lake Eyre Basin, Eromanga Basin, Darling Basin and Arrowie Basin, as well as fractured rock aquifers of the Adelaide Superbasin and Curnamona Province. However, there is little known about the hydrogeology or hydrogeochemistry of these aquifers in the Broken Hill region. Given the semi-arid climate in this region, understanding these groundwater systems can better support sustainable use of the groundwater for agriculture, mining and potable water supplies.</div><div> </div><div>Aquifer attribution provides a fundamental starting point for any hydrogeological study. We will present recently released hydrogeochemical data for the Broken Hill region, and our subsequent process for assessing and attributing hydrostratigraphy to the samples. </div><div>The Broken Hill Groundwater Geochemistry dataset (BHGG) was recently released in its entirety (Caritat et al. 2022 http://dx.doi.org/10.11636/Record.2022.020). It contains a compilation of archival CRC LEME hydrochemistry data that was collected as part of several projects from 1999 to 2005. This high-quality dataset contains 275 groundwater samples and includes a comprehensive suite of majors, minors, trace elements and stable isotopes (δ34S, δ18O, δ2H, δ13C, 87Sr/86Sr, 208/207/206Pb/204Pb). </div><div> At the time of collection, some key bore metadata (e.g. bore depths, screen and aquifer information) were missing from the original data compilations and these metadata are crucial for any hydrogeological analysis and interpretation. Therefore, as part of the new BHGG data release we have developed a robust and consistent approach to add bore information and aquifer attribution, value-adding to the original BHGG chemical and isotopic data. This workflow utilises a combination of State databases, reports, field notes, drillhole compilations and geological maps, but still relied on local hydrological expertise to make decisions when encountering incomplete or conflicting information (which is reflected by a confidence rating on the attribution). </div><div> The resulting BHGG product has supported re-assessment of the key hydrogeological and geochemical knowledge gaps in each groundwater system. An overview of knowledge gaps and the new sampling program being undertaken will be included in the presentation. </div><div><br></div>This Abstract was submitted/presented to the 2022 Australasian Groundwater Conference 21-23 November (https://agc2022.com.au/)