geodynamics
Type of resources
Keywords
Publication year
Scale
Topics
-
As part of initiatives by the Australian and Queensland Governments, four new seismic reflection lines and three corresponding magnetotelluric lines were acquired in 2007 over the Mt Isa, Georgetown and Charters Towers regions. These data, combined with existing multidisciplinary data, have provided new insights into the 3D architecture, geodynamics and economic potential of the North Queensland region.
-
Interpretation of the 2006 deep seismic reflection data across the western Lachlan Orogen of southeast Australia have provided important insights into crustal-scale fluid pathways and possible source rocks in the Victorian orogenic gold province. The seismic profiles span three of the most productive structural zones in Victoria: the Stawell, Bendigo and Melbourne zones. Variations in the age and style of gold deposits across the structural zones are reflected by changes in crustal structure and composition, as revealed by the seismic data.
-
Six deep seismic reflection profiles totalling ~900 km were acquired across the Mount Isa Province in 2006 (Figure 1). Each vibe point was recorded to ~20 s TWT (two-way travel time), which equates to ~60 km depth. The aims of the survey were to develop a 3D model and a geodynamic history of the province, link deep crustal structure with known mineral deposits, and demonstrate the potential of deep seismic surveys in mineral exploration
-
Tholeiitic intrusion-hosted nickel sulphide deposits are highly sort exploration targets due to their potential size and co-products platinum-group elements and copper. The Norilsk-Talnakh (Russia), Voisey's Bay (Canada) and Jinchuan (China) deposits are world class examples. Although Australia holds the largest economic resources of nickel in the world, its nickel resources are mainly sourced from komatiitic-hosted and lateritic deposits. Known resources of tholeiitic intrusion-hosted nickel sulphides are relatively small, with Nebo-Babel and Nova-Bollinger in Western Australia the most significant examples. Given the abundance of tholeiitic igneous rocks in Australia, this important deposit type seems to be under-represented when compared to other continents with similar geology. To support the discovery of world class nickel sulphide deposits in Australia, Geoscience Australia has recently undertaken a continental-scale GIS-based prospectivity analysis for tholeiitic intrusion-hosted deposits across Australia. This analysis exploits a suite of new relevant digital datasets recently released by Geoscience Australia. For example, the analysis utilises the Australian Mafic-Ultramafic Magmatic Events GIS Dataset which places mafic and ultramafic rocks across Australia into 74 coeval magmatic events based on geochronological data. Whole rock geochemistry of mafic and ultramafic rocks has been used to differentiate between magma series and discriminate between different magmatic events and units within those events. Other new datasets include crustal domain boundaries derived from both deep crustal seismic data and neodymium depleted mantle model age data as well as a coverage of the minimum thickness of mafic rocks in the crust derived from the Australian Seismogenic Reference Earth Model. This continental-scale GIS-based nickel sulphide prospectivity analysis uses a mineral systems approach to map the four essential components of ore-forming mineral systems; (1) sources of ore constituents, (2) crustal and mantle lithospheric architecture, (3) energy sources or drivers of the ore-forming system, and (4) gradients in ore depositional physico-chemical parameters. These four components are combined into a prospectivity map using weights-of-evidence GIS-based techniques, with the most prospective areas across the continent occurring where all components are present. The mineral systems approach allows for the identification of a much larger footprint than the deposit itself, and can be applied to greenfield and/or undercover areas. The results highlight areas that contain known tholeiitic intrusion-hosted nickel sulphide deposits, such as the Musgrave and Pilbara Provinces, as well as regions that do not contain any known deposits, such as the southern margin of the Arunta Province in the Northern Territory, the Mount Isa Province in Queensland and the Paterson Province in Western Australia.
-
Beginning in the Archean, the continent of Australia evolved to its present configuration through the accretion and assembly of several smaller continental blocks and terranes at its edges. Australia grew usually by convergent plate margin processes, such as arc-continent collision, continent-continent collision or through accretionary processes at subduction zones. The accretion of several island arcs to the Australian continent, through arc-continent collisions, played an important role in this process, and the geodynamic implications of some Archean and Proterozoic island arcs recognised in Australia will be discussed here.
-
Interpretation of the Capricorn deep seismic reflection survey has provided images which allow us to examine the geodynamic relationships between the Pilbara Craton, Capricorn Orogen and Yilgarn Craton in Western Australia. Prior to the seismic survey, suture zones were proposed at the Talga Fault, between the Pilbara Craton and the Capricorn Orogen, and at the Errabiddy Shear Zone between the Yilgarn Craton and the Glenburgh Terrane, the southernmost component of the Capricorn Orogen. Our interpretation of the seismic lines indicates that there is a suture between the Pilbara Craton and the newly-recognised Bandee Seismic Province. Our interpretation also suggests that the Capricorn Orogen can be subdivided into at least two discrete crustal blocks, with the interpretation of a suture between them at the Lyons River Fault. Finally, the seismic interpretation has confirmed previous interpretations that the crustal architecture between the Narryer Terrane of the Yilgarn Craton and the Glenburgh Terrane consists of a south-dipping structure in the middle to lower crust, with the Errabiddy Shear Zone being an upper crustal thrust system where the Glenburgh Terrane has been thrust to the south over the Narryer Terrane.
-
The Archean Yilgarn Craton of Western Australia, is not only one of the largest extant fragments of Archean crust in the world, but is also one of the most richly-mineralised regions in the world. Understanding the evolution of the craton is important, therefore, for constraining Archean geodynamics, and the influence of such on Archean mineral systems. The Yilgarn Craton is dominated by felsic intrusive rocks - over 70% of the rock types. As such these rocks hold a significant part of the key to understanding the four-dimensional evolution of the craton, providing constraints on the nature and timing of crustal growth, the role of the mantle, and also the timing of important switches in crustal growth geodynamics. The granites also provide constraints on the nature and age of the crustal domains within the craton. Importantly, this crustal pre-history appears to have exerted a significant, but poorly understood, spatial control on the distribution of mineral systems, such as gold, komatiite-associated nickel sulphide and volcanic-hosted massive sulphide (VHMS) base metal systems
-
One of the main outputs of the Earthquake Hazard project at Geoscience Australia is the national earthquake hazard map. The map is one of the key components of Australia's earthquake loading standard, AS1170.4. One of the important inputs to the map is the rate at which earthquakes occur in various parts of the continent. This is a function of the strain rate, or the rate of deformation, currently being experienced in different parts of Australia. This paper presents two contrasting methods of estimating the strain rate, and thus the seismicity, using the latest results from the seismology and geodynamic modelling programs within the project. The first method is based on a fairly traditional statistical analysis of an updated catalogue of Australian earthquakes. Strain rates, where measurable, were in the range of 10-16s-1 to around 10-18s-1 and were highly variable across the continent. By contrast, the second method uses a geodynamic numerical model of the Australian plate to determine its rate of deformation. This model predicted a somewhat more uniform strain rate of around 10-17s-1 across the continent. The uniformity of the true distribution of long term strain rate in Australia is likely to be somewhere between these two extremes but is probably of about this magnitude. In addition, this presentation will also give an overview of how this kind of work could be incorporated into future versions of the national earthquake hazard map in both the short and long term.
-
Extended abstract of metalogenic implications of seismic and allied results in North Queensland
-
The Tasman Orogen represents a long-lived accretionary orogen with numerous orogenic cycles of extension and subsequent orogeny. Although details of the orogen are controversial, it is evident that the present configuration represents the cumulate products of many orogenies including both accretion and significant rearrangement of terranes. As a result the Tasman Orogen plays host to a significant array of commodities within a myriad of deposit styles, related to a variety of tectonic regimes. It is also evident that many mineralisation styles are repeated through the different orogenic cycles, and commonly during the same parts of the orogenic cycle. For example, volcanic-hosted massive sulphide deposits form early in cycles, whereas lode gold deposits form during contractional orogenesis that terminates the cycle. The geological complexity is both an advantage and disadvantage. Although the complexity can hinder regional exploration, it offers significant potential for identifying regions where previously unrecognised mineralisation styles may be present, particularly under cover where the geology (and tectonic history) is less well constrained.