From 1 - 10 / 14
  • This service provides access to airborne electromagnetics (AEM) derived conductivity grids in the Upper Darling Floodplain region. The grids represent 30 depth intervals from modelling of AEM data acquired in the Upper Darling Floodplain, New South Wales, Airborne Electromagnetic Survey (https://dx.doi.org/10.26186/147267), an Exploring for the Future (EFTF) project jointly funded by Geoscience Australia and New South Wales Department of Planning and Environment (NSW DPE). The AEM conductivity model delineates important subsurface features for assessing the groundwater system including lithological boundaries, palaeovalleys and hydrostatigraphy.

  • This service delivers airborne electromagnetics (AEM) derived conductivity grids for depth intervals representing the top 22 layers from AEM modelling in the West Musgrave region (https://dx.doi.org/10.26186/147969). The grids were generated from the AEM conductivity models released as part of the Western Resource Corridor AusAEM survey (https://dx.doi.org/10.26186/147688), the Earaheedy and Desert Strip AusAEM survey (https://pid.geoscience.gov.au/dataset/ga/145265) and several industry surveys (https://dx.doi.org/10.26186/146278) from the West Musgraves region. The AEM conductivity models resolve important subsurface features for assessing the groundwater system including lithological boundaries, palaeovalleys and hydrostatigraphy.

  • This service provides access to airborne electromagnetics (AEM) derived conductivity grids in the Upper Darling Floodplain region. The grids represent 30 depth intervals from modelling of AEM data acquired in the Upper Darling Floodplain, New South Wales, Airborne Electromagnetic Survey (https://dx.doi.org/10.26186/147267), an Exploring for the Future (EFTF) project jointly funded by Geoscience Australia and New South Wales Department of Planning and Environment (NSW DPE). The AEM conductivity model delineates important subsurface features for assessing the groundwater system including lithological boundaries, palaeovalleys and hydrostatigraphy.

  • This service delivers airborne electromagnetics (AEM) derived conductivity grids for depth intervals representing the top 22 layers from AEM modelling in the West Musgrave region (https://dx.doi.org/10.26186/147969). The grids were generated from the AEM conductivity models released as part of the Western Resource Corridor AusAEM survey (https://dx.doi.org/10.26186/147688), the Earaheedy and Desert Strip AusAEM survey (https://pid.geoscience.gov.au/dataset/ga/145265) and several industry surveys (https://dx.doi.org/10.26186/146278) from the West Musgraves region. The AEM conductivity models resolve important subsurface features for assessing the groundwater system including lithological boundaries, palaeovalleys and hydrostatigraphy.

  • This service provides access to airborne electromagnetics (AEM) derived conductivity grids in the Upper Darling Floodplain region. The grids represent 30 depth intervals from modelling of AEM data acquired in the Upper Darling Floodplain, New South Wales, Airborne Electromagnetic Survey (https://dx.doi.org/10.26186/147267), an Exploring for the Future (EFTF) project jointly funded by Geoscience Australia and New South Wales Department of Planning and Environment (NSW DPE). The AEM conductivity model delineates important subsurface features for assessing the groundwater system including lithological boundaries, palaeovalleys and hydrostatigraphy.

  • <div>Previous work by the SA government and CSIRO[i] highlighted the value of integrating AEM data with other geological and hydrogeological data to model palaeovalley groundwater systems and develop regional hydrogeological conceptualisations. This allows better-informed water supply decisions and management for communities in remote parts of Australia where these systems provide the only available and long-term water resource. The Exploring for the Future Musgrave Palaeovalley module seeks to apply similar work flows across the western Musgrave Province and adjacent Officer and Canning basins.</div><div>Open file mineral exploration AEM data from 11 surveys in WA and SA flown between 2009 and 2012 were re-processed and inverted to produce conductivity models and a suite of derived datasets. Geoscience Australia’s Layered-Earth-Inversion was used as a single standard processing and inversion method to improve continuity and data quality.</div><div>These legacy AEM data, originally for mineral exploration, have been incorporated with DEM-derived landscape attributes, previous palaeovalley mapping and available bore lithologies to model palaeovalley base surfaces. This presentation will provide an example from four blocks of AEM data to show how repurposing data from mineral exploration, public bore data and landscape analysis can be used to identify palaeovalley systems which provide critical water supplies for remote and regional communities and industry[ii].</div><div>This approach can be used to model palaeovalley systems from a range of geoscientific and other datasets. The Exploring for the Future Musgrave Palaeovalley module has acquired ~23,000 line km of AEM across parts of WA and the NT at line spacings of 1 and 5 km. This new precompetitive data will be used to model palaeovalley system geometry and integrate with new and existing AEM, drilling, landscape, groundwater chemistry and surface geophysics data to test hydrogeological conceptualisations of these groundwater systems.</div><div><br></div><div><br></div><div> [i] Costar, A., Love, A., Krapf, C., Keppel, M., Munday, T., Inverarity, K., Wallis, I. &&nbsp;Sørensen, C. (2019). Hidden water in remote areas – using innovative exploration to uncover the past in the Anangu Pitjantjatjara Yankunytjatjara Lands. MESA Journal 90(2), 23 - 35 pp.</div><div>Krapf, C., Costar, A., Stoian, L., Keppel, M., Gordon, G., Inverarity, K., Love, A. &&nbsp;Munday, T. (2019). A sniff of the ocean in the Miocene at the foothills of the Musgrave Ranges - unravelling the evolution of the Lindsay East Palaeovalley. MESA Journal 90(2), 4 - 22 pp.</div><div>Krapf, C. B. E., Costar, A., Munday, T., Irvine, J. A. & Ibrahimi, T., 2020. Palaeovalley map of the Anangu Pitjantjatjara Yankunytjatjara Lands (1st edition), 1:500 000 scale. Goyder Institute for Water Research, Geological Survey of South Australia, CSIRO.</div><div>https://sarigbasis.pir.sa.gov.au/WebtopEw/ws/samref/sarig1/wci/Record?r=0&m=1&w=catno=2042122. </div><div>Munday, T., Taylor, A., Raiber, M., Sørensen, C., Peeters, L. J. M., Krapf, C., Cui, T., Cahill, K., Flinchum, B., Smolanko, N., Martinez, J., Ibrahimi, T. &&nbsp;Gilfedder, M., 2020a. Integrated regional hydrogeophysical conceptualisation of the Musgrave Province, South Australia, Goyder Institute for Water Research Technical Report Series 20/04, Goyder Institute for Water Research, Adelaide.</div><div>Munday, T., Gilfedder, M., Costar, A., Blaikie, T., Cahill, K., Cui, T., Davis, A., Deng, Z., Flinchum, B., Gao, L., Gogoll, M., Gordon, G., Ibrahimi, T., Inverarity, K., Irvine, J., Janardhanan, Sreekanth, Jiang, Z., Keppel, M., Krapf, C., Lane, T., Love, A., Macnae, J., Mariethoz, G., Martinez, J., Pagendam, D., Peeters, L., Pickett, T., Robinson, N., Siade, A., Smolanko, N., Sorensen, C., Stoian, L., Taylor, A., Visser, G., Wallis, I. &&nbsp;Xie, Y., 2020b. Facilitating Long-term Outback Water Solutions (G-Flows Stage 3): Final Summary Report. Goyder Institute for Water Research, Adelaide, http://hdl.handle.net/102.100.100/376125?index=1. </div><div>[ii] Symington, N. J., Ley-Cooper, Y. A. &&nbsp;Smith, M. L., 2022. West Musgrave AEM conductivity models and data release. Geoscience Australia, Canberra, https://pid.geoscience.gov.au/dataset/ga/146278.&nbsp;</div> This Abstract was submitted/presented to the 2022 Sub 22 Conference 28-30 November (http://sub22.w.tas.currinda.com/)

  • This service delivers the base of Cenozoic surface and Cenozoic thickness grids for the west Musgrave province. The gridded data are a product of 3D palaeovalley modelling based on airborne electromagnetic conductivity, borehole and geological outcrop data, carried out as part of Geoscience Australia's Exploring for the Future programme. The West Musgrave 3D palaeovalley model report and data files are available at https://dx.doi.org/10.26186/149152.

  • This service delivers the base of Cenozoic surface and Cenozoic thickness grids for the west Musgrave province. The gridded data are a product of 3D palaeovalley modelling based on airborne electromagnetic conductivity, borehole and geological outcrop data, carried out as part of Geoscience Australia's Exploring for the Future programme. The West Musgrave 3D palaeovalley model report and data files are available at https://dx.doi.org/10.26186/149152.

  • <div>Non-technical summaries of groundwater in the remote communities of Warburton, Kaltukatjara (Docker River), Warakurna, Wingellina, Wanarn, Mantamaru (Jameson) and Papulankutja (Blackstone). These summaries are based on research undertaken as part of the Musgrave Palaeovalley Project and full results are available in the Musgrave Palaeovalley Project Synthesis Report (https://dx.doi.org/10.26186/149406).</div>

  • <div>The recent Musgrave Palaeovalley Project set out to map the extent and characterise the palaeovalley architecture of several of these Cenozoic features that overlie the Musgrave Province in central Australia. To effectively model the palaeovalley architecture of these features we collected approximately 20 000 line km of new Airborne Electromagnetics (AEM) and combined it with an array of existing AEM datasets, including AusAEM and high resolution mineral exploration surveys. These older surveys were reprocessed and reinverted to produce a consistent and reliable interpretation throughout. Utilising surface geology and lithology logs to constrain this data set, we mapped the interface between Cenozoic sediments and underlying pre-Cenozoic rocks, producing a continuous three-dimensional model of this boundary throughout the study area.</div><div><br></div><div>Our three-dimensional model enhances the understanding of the West Musgrave palaeovalley system, redefining palaeovalley extents, revealing previously unmapped palaeovalleys and identifying areas with significant accumulations of Cenozoic sediments. This methodology was also extremely useful for investigating palaeovalley geometry, revealing southerly flowpaths consistent with regional expectations but also highlighting areas of palaeovalley deformation where neo tectonic forces have acted to alter historical flow regimes. This deformation is likely to cause groundwater compartmentalisation, mounding or connect different aquifer units. Presented at the 2024 Australian Society of Exploration Geophysicists (ASEG) Discover Symposium