From 1 - 10 / 30
  • <div>NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first stratigraphic test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Georgina Basin carbonates.&nbsp;</div><div>Geoscience Australia has undertaken a range of investigations on the lithology, stratigraphy and geotechnical properties of NDI Carrara 1 as well as undertaking a range of analyses of about 500 physical samples recovered through the entire core. Analyses included geochronology, isotope studies, mineralogy, inorganic and organic geochemistry, petrophysics, geomechanics, thermal maturity and petroleum systems investigations.</div><div>Rock-Eval pyrolysis raw data undertaken by Geoscience Australia were reported in Butcher et al. (2021) on selected rock samples to establish their total organic carbon content, hydrocarbon-generating potential and thermal maturity. Interpretation of the Rock-Eval pyrolysis data concluded that a large portion of rocks within the Proterozoic section displayed unreliable Tmax values due to poorly defined S2 peaks resulting from high thermal maturity and low hydrogen content. In order to obtain more reliable Tmax values, Rock-Eval pyrolysis of selected isolated kerogens, where organic matter is concentrated and mineral matrix effects are removed, were conducted and the resulting data are presented in this report.&nbsp;</div><div><br></div>

  • NDI Carrara 1 is a deep stratigraphic drill hole (~1751m) completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. This report presents inorganic geochemical analyses undertaken by Geoscience Australia on selected rock samples, collected at roughly 4 m intervals.

  • <div>This study aims to understand both the burial and thermal history of the Carrara Sub-basin to further develop an understanding of possible geo-energy resources, particularly that for unconventional resources such as shale gas. A 1D and 2D model were developed using data from the above mentioned seismic and drilling campaigns, combined with previously published knowledge of the basin. This work contributes to Australia’s Future Energy Resources (AFER) Project, specifically the Onshore Basin Inventories study, which aims to promote exploration and investment in selected underexplored onshore basins. Inventory reports and petroleum systems modelling are being undertaken in select basins to highlight the oil and gas potential in underexplored provinces and to increase the impact of existing datasets.</div><div><br></div>

  • NDI Carrara 1 is a deep stratigraphic well completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI), in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first stratigraphic test of the Carrara Sub-Basin, a newly discovered depocentre in the South Nicholson region. The well intersected Proterozoic sediments with numerous hydrocarbon shows, likely to be of particular interest due to affinities with the known Proterozoic plays of the Beetaloo Sub-basin and the Lawn Hill Platform, including two organic-rich black shales and a thick sequence of interbedded black shales and silty-sandstones. Alongside an extensive suite of wireline logs, continuous core was recovered from 283.9 m to total depth at 1750.8 m, providing high-quality data to support comprehensive analysis. Presently, this includes geochronology, geochemistry, geomechanics, and petrophysics. Rock Eval pyrolysis data demonstrates the potential for several thick black shales to be a source of hydrocarbons for conventional and unconventional plays. Integration of these data with geomechanical properties highlights potential brittle zones within the fine-grained intervals where hydraulic stimulation is likely to enhance permeability, identifying prospective Carrara Sub-basin shale gas intervals. Detailed wireline log analysis further supports a high potential for unconventional shale resources. Interpretation of the L210 and L212 seismic surveys suggests that the intersected sequences are laterally extensive and continuous throughout the Carrara Sub-basin, potentially forming a significant new hydrocarbon province and continuing the Proterozoic shale play fairway across the Northern Territory and northwest Queensland. This abstract was submitted and presented at the 2022 Australian Petroleum Production and Exploration Association (APPEA), Brisbane (https://appea.eventsair.com/appea-2022/)

  • NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-Basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Cambrian Georgina Basin carbonates. Continuous cores recovered from 283 m to a total depth of 1750 m provide samples of the highest quality for a comprehensive geochemical program designed to inform on the energy and mineral prospectivity of the Carrara Sub-basin. Total Organic Carbon (TOC) contents from Rock-Eval pyrolysis of the Cambrian and Proterozoic sections demonstrate the potential for several thick black shales as source rocks and unconventional plays. Evidence for retained hydrocarbons included bituminous oil stains in centimetre-scale vugs within the Cambrian Georgina Basin and several oil bleeds within the Proterozoic section. The latter also contains surface gas with up to 2% methane concentrations measured within carbonaceous mudstones. Geochemical analyses of hydrocarbon shows highlight the occurrence of several petroleum systems operating in this frontier region. The results at NDI Carrara 1 offer the promise of a new exciting resource province in northern Australia.

  • The recently drilled deep stratigraphic drill hole NDI Carrara 1 penetrates the carbonate formations of the Cambrian Georgina Basin as well as the underlying Proterozoic successions of the Carrara Sub-basin. The Proterozoic section consists predominantly of tight shales, siltstones, and calcareous clastic rocks. This study aims to assess the petrophysical properties of the Proterozoic shales using conventional wireline logs. Gamma ray and neutron-density crossplots were used to calculate shale volume fraction, and neutron-density crossplots were applied to compute the total and effective porosity of non-shale rocks. Total organic carbon (TOC) content was interpreted using artificial neural networks, and was used to derive the volume of organic matter was converted from TOC content. Bulk density logs were corrected by removing the kerogen effect in the organic-rich shales. Matrix and kerogen densities were obtained by correlating the reciprocal of grain density with TOC content. Total shale porosity was calculated from kerogen-corrected density porosity and organic porosity. Effective porosity was estimated by removing the shaliness effect. Water saturation was derived using the Simandoux equation. The Proterozoic Lawn Hill Formation in NDI Carrara 1 exhibits petrophysical properties that indicate a favourable potential for shale gas resources. Herein, we define three informal intervals within the intersected Lawn Hill Formation; the upper Lawn Hill, the Lawn Hill shale, and the lower Lawn Hill. The net shale thickness of the upper Lawn Hill and Lawn Hill shale intervals are 165 m and 149 m, respectively. The increased TOC content and organic porosity of the upper Lawn Hill and Lawn Hill shale implies higher adsorbed gas content potential. The Lawn Hill shale has the highest gas saturation (average of 31.1%) and the highest potential for free gas content, corresponding to the highest methane responses in logged mud gas profiles. This extended Abstract was submitted to/presented at the Australasian Exploration Geoscience Conference (AEGC) 2023, Brisbane (https://2023.aegc.com.au/)

  • <div>NDI Carrara 1 is a deep stratigraphic borehole that was drilled in 2020 under the MinEx CRC’s National Drilling Initiative (NDI) program in collaboration with Geoscience Australia and the Northern Territory Geological Survey. NDI Carrara 1 is the first stratigraphic test of the recently described Carrara Sub-basin, a Proterozoic aged depocentre located in the South Nicholson region of northwest Queensland and the Northern Territory. The borehole was drilled to a total depth of 1751 m and penetrated a succession of Cambrian aged Georgina Basin carbonate and siliciclastic rocks that unconformably overly a thick succession of Proterozoic age siliciclastic and carbonate-rich sediments. Although drilled on the western flank of the Carrara Sub-basin, NDI Carrara 1 did not penetrate to basement. Interpretation of the L210 deep-crustal seismic survey suggests that further Proterozoic sedimentary packages known from the northern Lawn Hill Platform in northwest Queensland are likely to be found underlying the succession intersected in NDI Carrara 1. The borehole was continuously cored from 283 m to total depth, and an extensive suite of wireline logs was acquired. Geoscience Australia and partners have undertaken an extensive analytical program to understand the depositional, structural, and diagenetic history of the sediments intersected in NDI Carrara 1. This program includes a targeted petrophysical study that aims to characterise the physical properties of these Proterozoic rocks through laboratory analysis of core samples, the results of which are summarised in this data release.</div><div><br></div><div>This data release provides data from new X-ray Computerised Tomography (XCT) scanning and gas porosity and permeability testing for 32 samples from NDI Carrara 1. Additional low permeability tests were undertaken on select samples that were identified as being ultra-tight (permeability <1 μD). These tests were performed at the CSIRO Geomechanics and Geophysics Laboratory in Perth, during January to June 2022. The full results as provided by CSIRO to Geoscience Australia are provided as an attachment to this document.&nbsp;</div>

  • The Proterozoic succession in the NDI Carrara 1 drill hole, Northern Territory, consists predominantly of tight shales, siltstones, and calcareous clastic rocks. As part of Geoscience Australia’s Exploring for the Future program, this study aims to derive porosity, permeability and gas content from both laboratory testing and well log interpretation from machine learning approaches, to improve the Proterozoic shale gas reservoir characterisation. The Proterozoic Lawn Hill Formation was divided into four chemostratigraphic packages. The middle two packages were further divided into seven internal units according to principal component analysis and self-organising map clustering on well logs and inorganic geochemical properties. Artificial neural networks were then applied to interpret the mineral compositions, porosity and permeability from well logs, density and neutron-density crossplot interpretations. Gas content was estimated from the interpreted porosity, gas saturation, total organic carbon and clay contents. Petrophysical interpretation results are summarised for all chemostratigraphic packages and units. Package 2 (1116–1430.1 m) has the highest potential among the four chemostratigraphic packages. P2U1 (1116–1271 m) and P2U3 (1335.5–1430.1 m) units have the most favourable petrophysical properties for organic-rich shales with the average total gas contents of 1.25 cm3/g and 1.30 cm3/g, geometric mean permeability of 4.79 µD and 17.56 µD, and net shale thickness of 54.4 m and 85.3 m, respectively. P3U4 unit (687.9–697.9 m) has high gas content and permeability, with the net shale thickness of 29.1 m. Besides the organic-rich shales, the tight non-organic-rich siltstone and shale reservoirs in package 1 (below 1430.1 m) have average gas saturation of 14% and geometric mean permeability of 1.31 µD, respectively. Published in The APPEA Journal 2023. <b>Citation:</b> Wang Liuqi, Bailey Adam H. E., Grosjean Emmanuelle, Carson Chris, Carr Lidena K., Butcher Grace, Boreham Christopher J., Dewhurst Dave, Esteban Lionel, Southby Chris, Henson Paul A. (2023) Petrophysical interpretation and reservoir characterisation on Proterozoic shales in National Drilling Initiative Carrara 1, Northern Territory. <i>The APPEA Journal</i><b> 63</b>, 230-246. https://doi.org/10.1071/AJ22049

  • NDI Carrara 1 is a deep stratigraphic drill hole (~1751m) completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. This report presents petrology and clay speciation XRD conducted on of 6 selected volcaniclastic rocks taken from NDI Carrara 1 between ca. 1579 m and ca. 1653 m depth. Petrology and XRD was undertaken by Microanalysis Australia (under contract to Geoscience Australia as part of the Exploring for the Future program). Borehole completion report can be found at https://portal.ga.gov.au/bhcr/minerals/648482

  • <div>This study was commissioned by Geoscience Australia (GA) to produce a report on seal capacity of select samples from the deep stratigraphic hole NDI Carrara 1, located in the Proterozoic Carrara Sub-basin in the Northern Territory. Plugs were taken from depths of interest and analysed via mercury injection capillary pressure testing. Results were provided as two reports, Part A and Part B and demonstrate that the analysed samples are capable of sealing very large columns of both methane and carbon dioxide.</div>