From 1 - 4 / 4
  • Hydrochemistry data for Australian groundwater, including field and laboratory measurements of chemical parameters (electrical conductivity (EC), potential of hydrogen (pH), redox potential, and dissolved oxygen), major and minor ions, trace elements, nutrients, pesticides, isotopes and organic chemicals. < <b>Value: </b>The chemical properties of groundwater are key parameters to understand groundwater systems and their functions. Groundwater chemistry information includes the ionic and isotopic composition of the water, representing the gases and solids that are dissolved in it. Hydrochemistry data is used to understand the source, flow, and interactions of groundwater samples with surface water and geological units, providing insight into aquifer characteristics. Hydrochemistry information is key to determining the quality of groundwater resources for societal, agricultural, industrial and environmental applications. Insights from hydrochemical analyses can be used to assess a groundwater resource, the impact of land use changes, irrigation and groundwater extraction on regional groundwater quality and quantity, assess prospective mineral exploration targets, and determine how groundwater interacts with surface water in streams and lakes. <b>Scope: </b>The database was inaugurated in 2016 with hydrochemical data collected over the Australian landmass by Geoscience Australia and its predecessors, and has expanded with regional and national data. It has been in the custodianship of the hydrochemists in Geoscience Australia's Minerals, Energy and Groundwater Division and its predecessors. Explore the <b>Geoscience Australia portal - https://portal.ga.gov.au/</b>

  • Geoscience Australia and its predecessors have analysed hydrochemistry of water sampled from boreholes (both pore water and groundwater), surface features, and rainwater. Sampling was undertaken during drilling or monitoring projects, and this dataset represents a significant subset of stored analyses. Water chemistry including isotopic data is essential to better understand groundwater origins, ages and dynamics, processes such as recharge and inter-aquifer connectivity and for informing conceptual and numerical groundwater models. This GA dataset underpins a nationally consistent data delivery tool and web-based mapping to visualise, analyse and download groundwater chemistry and environmental isotope data. This dataset is a spatially-enabled groundwater hydrochemistry database based on hydrochemistry data from projects completed in Geoscience Australia. The database includes information on physical-chemical parameters (EC, pH, redox potential, dissolved oxygen), major and minor ions, trace elements, nutrients, pesticides, isotopes and organic chemicals. Basic calculations for piper plots colours are derived from Peeters, 2013 - A Background Color Scheme for Piper Plots to Spatially Visualize Hydrochemical Patterns - Groundwater, Volume 52(1) <https://doi.org/10.1111/gwat.12118>. Upon loading the data to the database, all hydrochemistry data are assessed for reliability using Quality Assurance/Quality Control procedures and all datasets were standardised. This data is made accessible with open geospatial consortium (OGC) web services and is discoverable via the Geoscience Australia Portal (<a href="https://portal.ga.gov.au/">https://portal.ga.gov.au/</a>). This dataset is published with the permission of the CEO, Geoscience Australia.

  • Millions of data points have been acquired or compiled through both phases of the Exploring for the Future (EFTF) program at Geoscience Australia (GA). This data that graces the EFTF Portal and appears in many publications has another home within specialist databases designed and built to house the specific data that GA collects. One such database is HYDROCHEM, which was implemented as part of the Enhanced Data Delivery (EDD) and National Groundwater Systems (NGS) projects. HYDROCHEM hosts 190,097 rows of groundwater, surface water and rainfall water chemistry analyses. This data was either previously hosted in the GNDWATER database, or compiled from legacy data stores. The redevelopment of GNDWATER to HYDROCHEM saw the de-duplication and updating of sample and site-specific metadata into other GA databases, such as SAMPLES, BOREHOLES and FIELDSITES. The redevelopment also added additional constraints to the database, including minimum metadata requirements, constrained look-up tables for units of measure, laboratory, method, filter sizes, standards and uncertainty types. Other features include minimum and maximum values for particular analytes and delivery of the data in standardised GA-preferred units of measure.

  • Geoscience Australia and its predecessors have analysed the hydrochemistry of water sampled from bores, surface features, rainwater and core samples (pore water). Samples have been collected during drilling or monitoring projects, including Exploring for the Future (EFTF). The hydrochemistry database includes physical-chemical parameters (EC, pH, redox potential, dissolved oxygen), major and minor ions, trace elements, isotopes and nutrients. The resource is accessible via the Geoscience Australia Portal <a href="https://portal.ga.gov.au/">(https://portal.ga.gov.au/)</a>