From 1 - 5 / 5
  • AusLAMP is a collaborative national project to cover Australia with long-period magnetotelluric (MT) data in an approximately 55 km spaced array. Signatures from past tectonothermal events can be retained in the lithosphere for hundreds of millions of years when these events deposit conductive mineralogy that is imaged by MT as electrically conductive pathways. MT also images regions of different bulk conductivity and can help to understand the continuation of crustal domains down into the mantle, and address questions on the tectonic evolution of Australia. The AusLAMP data presented here were collected as part of three separate collaborative projects involving several organisations. Geoscience Australia (GA), the Geological Survey of South Australia, the Geological Survey of New South Wales, the Geological Survey of Victoria, and the University of Adelaide all contributed staff and/or funding to collection of AusLAMP data; GA and AuScope contributed instrumentation. The data cover the Paleo-Mesoproterozoic Curnamona Province, the Neoproterozoic Flinders Ranges, and the Cambrian Delamerian Orogen, encompassing eastern South Australia and western New South Wales and western Victoria. This project represents the first electrical resistivity model to image the entire Curnamona Province and most of the onshore extent of the Delamerian Orogen, crossing the geographical state borders between South Australia, New South Wales and Victoria.

  • The magnetotelluric (MT) method is increasingly being applied to map tectonic architecture and mineral systems. Under the Exploring for the Future (EFTF) program, Geoscience Australia has invested significantly in the collection of new MT data. The science outputs from these data are underpinned by an open-source data analysis and visualisation software package called MTPy. MTPy started at the University of Adelaide as a means to share academic code among the MT community. Under EFTF, we have applied software engineering best practices to the code base, including adding automated documentation and unit testing, code refactoring, workshop tutorial materials and detailed installation instructions. New functionality has been developed, targeted to support EFTF-related products, and includes data analysis and visualisation. Significant development has focused on modules to work with 3D MT inversions, including capability to export to commonly used software such as Gocad and ArcGIS. This export capability has been particularly important in supporting integration of resistivity models with other EFTF datasets. The increased functionality, and improvements to code quality and usability, have directly supported the EFTF program and assisted with uptake of MTPy among the international MT community. <b>Citation:</b> Kirkby, A.L., Zhang, F., Peacock, J., Hassan, R. and Duan, J., 2020. Development of the open-source MTPy package for magnetotelluric data analysis and visualisation. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • We present a resistivity model of the southern Tasmanides of southeastern Australia using Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) data. Modelled lower crustal conductivity anomalies resemble concentric geometries revealed in the upper crust by potential field and passive seismic data. These geometries are a key part of the crustal architecture predicted by the Lachlan Orocline model for the evolution of the southern Tasmanides, in which the Proterozoic Selwyn Block drives oroclinal rotation against the eastern Gondwana margin during the Silurian period. For the first time, we image these structures in three dimensions (3D) and show they persist below the Moho. These include a lower crustal conductor largely following the northern Selwyn Block margin. Spatial association between lower crustal conductors and both Paleozoic to Cenozoic mafic to intermediate alkaline volcanism and gold deposits suggests a genetic association i.e. fluid flow into the lower crust resulting in the deposition of conductive phases such as hydrogen, iron, sulphides and/or graphite. The 3D model resolves a different pattern of conductors in the lithospheric mantle, including northeast trending anomalies in the northern part of the model. Three of these conductors correspond to Cenozoic leucitite volcanoes along the Cosgrove mantle hotspot track which likely map the metasomatised mantle source region of these volcanoes. The northeasterly alignment of the conductors correlates with variations in the lithosphere-asthenosphere boundary (LAB) and the direction of Australian plate movement, and may be related to movement of an irregular LAB topography over the asthenosphere. By revealing the tectonic architecture of a Phanerozoic orogen and the overprint of more recent tectono-magmatic events, our resistivity model enhances our understanding of the lithospheric architecture and geodynamic processes in southeast Australia, demonstrating the ability of magnetotelluric data to image geological processes over time.

  • Marine seismic surveys are a fundamental tool for geological mapping, including the exploration for offshore oil and gas resources, but the sound generated during these surveys is an acute source of noise in the marine environment. Growing concern and increasing scientific evidence about the potential impacts of underwater noise associated with marine seismic surveys presents an interdisciplinary challenge to multiple sectors including government, industries, scientists and environmental managers. To inform this issue, Geoscience Australia, in collaboration with Curtin University and CSIRO, published a literature review (Carroll et al. 2017) that summarised 70 peer-reviewed scientific studies that investigated the impacts of impulsive low-frequency sound on marine fish and invertebrates. Here we provide an updated, critical synthesis of recently published data to ensure that the Australian governments’ understanding of the potential impacts of seismic surveys on fisheries and the broader marine environment remains current. A significant body of scientific research into the effects of marine seismic sounds on the marine environment has been undertaken over the past four years and scientific knowledge in this area is continuing to improve. This is partly due to increased sophistication of experimental designs that integrate the controlled aspects of laboratory studies, with field-based (before-after-control-impact) studies. However, there remain several research issues and challenges associated with progressing our understanding of the full impact of marine seismic surveys on fisheries and the marine environment. These include the need to broaden the research to cover a wider range of marine species, and to expand our understanding to impacts at the population and ecosystem scale, rather than the individual organism. There is also a continued need for improved standardisation in terminology and measurement of sound exposure. To address the research gaps and issues, Geoscience Australia recommends measures including: 1) undertaking additional multidisciplinary co-designed scientific research to examine short and long term impacts on important life stages of key species (including protected and commercially important species); 2) gathering robust environmental baselines and time-series data to account for spatiotemporal variability in the marine environment and to help inform management and monitoring; 3) continuing to develop and refine standards for quantifying sound exposure; 4) modelling population and ecosystem consequences, and; 5) further studying the interaction of seismic signals with other stressors to better assess cumulative impacts. If applied these recommendations may advance the scientific evidence-base to better inform stakeholder engagement, environmental impact assessment and management of the potential impacts of seismic surveys on fisheries and the marine environment.

  • The GEOPHYS_SURV database describes geophysical surveys (air, land, and marine), the datasets derived from those surveys, and the methods used for delivery of those datasets. The database includes metadata for all surveys conducted or managed by Geoscience Australia and its predecessor agencies, as well as data and surveys from State and Territory geological survey agencies.