From 1 - 10 / 32
  • Modern geodetic and seismic monitoring tools are enabling study of moderate-sized earthquake sequences in unprecedented detail. Here we use a variety of methods to examine surface deformation caused by a sequence of earthquakes near Lake Muir in Southwest Western Australia in late 2018. A shallow MW 5.3 earthquake near Lake Muir on the 16th of September 2018 was followed on the 8th of November by a MW 5.2 event in the same region. Focal mechanisms produced for the events suggest reverse and strike slip rupture, respectively. Recent improvements in the coverage and observation frequency of the Sentinel-1 Synthetic Aperture Radar (SAR) satellite in Australia allowed for the timely mapping of the surface deformation field relating to both earthquakes in unprecedented detail. Interferometric Synthetic Aperture Radar (InSAR) analysis of the events suggest that the ruptures are in part spatially coincident. Field mapping, guided by the InSAR results, revealed that the first event produced an approximately 3 km long and up to 0.5 m high west-facing surface rupture, consistent with slip on a moderately east-dipping fault. Double difference hypocentre relocation of aftershocks using data from rapidly deployed seismic instrumentation confirms an easterly dipping rupture plane for the first event. The aftershocks are predominantly located at the northern end of the rupture where the InSAR suggests vertical displacement was greatest. The November event resulted from rupture on a NE-trending strike slip fault. Anecdotal evidence from local residents suggests that the southern part of the September rupture was ‘freshened’ during the November event, consistent with InSAR results, which indicate that a NW-SE trending structural element accommodated deformation during both events. Comparison of the InSAR-derived deformation field with surface mapping and UAV-derived digital terrain models (corrected to pre-event LiDAR) revealed a surface deformation envelope consistent with the InSAR for the first event, but could not discern deformation unique to the second event.

  • In plate boundary regions moderate to large earthquakes are often sufficiently frequent that fundamental seismic parameters such as the recurrence intervals of large earthquakes and maximum credible earthquake (Mmax) can be estimated with some degree of confidence. The same is not true for the Stable Continental Regions (SCRs) of the world. Large earthquakes are so infrequent that the data distributions upon which recurrence and Mmax estimates are based are heavily skewed towards magnitudes below Mw5.0, and so require significant extrapolation up to magnitudes for which the most damaging ground-shaking might be expected. The rarity of validating evidence from surface rupturing palaeo-earthquakes typically limits the confidence with which these extrapolated statistical parameters may be applied. Herein we present a new earthquake catalogue containing, in addition to the historic record of seismicity, 150 palaeo-earthquakes derived from 60 palaeo-earthquake features spanning the last > 100 ka of the history of the Precambrian shield and fringing extended margin of southwest Western Australia. From this combined dataset we show that Mmax in non-extended-SCR is M7.25 ± 0.1 and in extended-SCR is M7.65 ± 0.1. We also demonstrate that in the 230,000 km2 area of non-extended-SCR crust, the rate of seismic activity required to build these scarps is one tenth of the contemporary seismicity in the area, consistent with episodic or clustered models describing SCR earthquake recurrence. A dominance in the landscape of earthquake scarps reflecting multiple events suggests that the largest earthquakes are likely to occur on pre-existing faults. We expect these results might apply to most areas of non-extended-SCR worldwide.

  • Many mapped faults in the south-eastern highlands of New South Wales and Victoria are associated with apparently youthful topographic ranges, suggesting that active faulting may have played a role in shaping the modern landscape. This has been demonstrated to be the case for the Lake George Fault, ~25 km east of Canberra. The age of fluvial gravels displaced across the fault indicates that relief generation of approximately 250 m has occurred in the last ca. 4 Myr. This data implies a large average slip rate by stable continental region standards (~90 m/Myr assuming a 45 degree dipping fault), and begs the question of whether other faults associated with relief in the region support comparable activity rates. Preliminary results on the age of strath terraces on the Murrumbidgee River proximal to the Murrumbidgee Fault are consistent with tens of metres of fault activity in the last ca. 200 kyr. Further south, significant thicknesses of river gravels are over-thrust by basement rocks across the Tawonga Fault and Khancoban-Yellow Bog Fault. While these sediments remain undated, prominent knick-points in the longitudinal profiles of streams crossing these faults suggest Quaternary activity commensurate with that on the Lake George Fault. More than a dozen nearby faults with similar relief are uncharacterised. Recent seismic hazard assessments for large infrastructure projects concluded that the extant paleoseismic information is insufficient to meaningfully characterise the hazard relating to regional faults in the south-eastern highlands, despite the potential for large earthquakes alluded to above. While fault locations and extents remain inconsistent across scales of geologic mapping, and active fault lengths and slip rates remain largely unquantified, the same conclusion may be drawn for other scales of seismic hazard assessment.

  • The 20 May 2016 MW 6.1 Petermann earthquake in central Australia generated a 21 km surface rupture with 0.1 to 1 m vertical displacements across a low-relief landscape. No paleo-scarps or potentially analogous topographic features are evident in pre-earthquake Worldview-1 and Worldview-2 satellite data. Two excavations across the surface rupture expose near-surface fault geometry and mixed aeolian-sheetwash sediment faulted only in the 2016 earthquake. A 10.6 ± 0.4 ka optically stimulated luminescence (OSL) age of sheetwash sediment provides a minimum estimate for the period of quiescence prior to 2016 rupture. Seven cosmogenic beryllium-10 (10Be) bedrock erosion rates are derived for samples < 5 km distance from the surface rupture on the hanging-wall and foot-wall, and three from samples 19 to 50 km from the surface rupture. No distinction is found between fault proximal rates (1.3 ± 0.1 to 2.6 ± 0.2 m Myr−1) and distal samples (1.4 ± 0.1 to 2.3 ± 0.2 m Myr−1). The thickness of rock fragments (2–5 cm) coseismically displaced in the Petermann earthquake perturbs the steady-state bedrock erosion rate by only 1 to 3%, less than the erosion rate uncertainty estimated for each sample (7–12%). Using 10Be erosion rates and scarp height measurements we estimate approximately 0.5 to 1 Myr of differential erosion is required to return to pre-earthquake topography. By inference any pre-2016 fault-related topography likely required a similar time for removal. We conclude that the Petermann earthquake was the first on this fault in the last ca. 0.5–1 Myr. Extrapolating single nuclide erosion rates across this timescale introduces large uncertainties, and we cannot resolve whether 2016 represents the first ever surface rupture on this fault, or a > 1 Myr interseismic period. Either option reinforces the importance of including distributed earthquake sources in fault displacement and seismic hazard analyses. <b>Citation: </b>King, T. R., Quigley, M., Clark, D., Zondervan, A., May, J.-H., & Alimanovic, A. (2021). Paleoseismology of the 2016 M-W 6.1 Petermann earthquake source: Implications for intraplate earthquake behaviour and the geomorphic longevity of bedrock fault scarps in a low strain-rate cratonic region. <i>Earth Surface Processes and Landforms</i>, 46(7), 1238–1256.

  • Instrumentally observed earthquakes sequences typically show clusters of earthquakes interspersed with periods of quiescence. These ‘bursty’ sequences also have correlated inter-event times (‘long-term memory’). In contrast, elastic rebound theory forms the basis of the standard earthquake cycle model, and predicts large earthquakes to occur regularly through cycles of strain accumulation and release (periodicity). In this model the conditional probability of future large earthquakes is reduced immediately following fault rupture, and inter-event times are independent. Here we use the burstiness and memory coefficient metrics to characterize more than 100 long-term earthquake records. We find that large earthquake occurrence on the majority of Earth’s faults is weakly periodic and does not exhibit long-term memory; earthquakes occur more regularly than a random Poisson process although inter-event times are variable. In contrast, clustering occurs in slowly deforming regions (annual rates < 2 x 10-4), and is not explained by elastic rebound theory. <b>Citation:</b> Griffin, J. D., Stirling, M. W., & Wang, T. (2020). Periodicity and clustering in the long‐term earthquake record. <i>Geophysical Research Letters</i>, 47, e2020GL089272. https://doi.org/10.1029/2020GL089272

  • Geoscience Australia is the Australian Government advisor on the geology and geography of Australia, and develops the National Seismic Hazard Assessment (NSHA). The NSHA defines the level of earthquake ground shaking across Australia that has a likelihood of being exceeded in a given time period. Knowing how the ground-shaking hazard varies across Australia allows high hazard areas to be identified for the development of mitigation strategies so communities can be more resilient to earthquake events. The NSHA provides key information to the Australian Government Building Codes Board, so buildings and infrastructure design standards can be updated to ensure they can withstand earthquake events in Australia. Using the NSHA, decision makers can better consider: • What this could mean for communities in those areas and whether any further action is required • Where to prioritise further efforts • What this could mean for insurance and reinsurance premiums • Identify high and low hazard areas to plan for growth or investment in infrastructure

  • Sites recording the extinction or extirpation of tropical–subtropical and cool–cold temperate rainforest genera during the Plio–Pleistocene aridification of Australia are scattered across the continent, with most preserving only partial records from either the Pliocene or Pleistocene. The highland Lake George basin is unique in accumulating sediment over c. 4 Ma although interpretation of the plant microfossil record is complicated by its size (950 km2), neotectonic activity and fluctuating water levels. A comparison of this and other sites confirms (1) the extinction of rainforest at Lake George was part of the retreat of Nothofagus-gymnosperm communities across Australia during the Plio–Pleistocene; (2) communities of warm- and cool-adapted rainforest genera growing under moderately warm-wet conditions in the Late Pliocene to Early Pleistocene have no modern analogues; (3) the final extirpation of rainforest taxa at Lake George occurred during the Middle Pleistocene; and (4) the role of local wildfires is unresolved although topography, and, elsewhere, possibly edaphic factors allowed temperate rainforest genera to persist long after these taxa became extinct or extirpated at low elevations across much of eastern Australia. Araucaria, which is now restricted to the subtropics–tropics in Australia, appears to have survived into Middle Pleistocene time at Lake George, although the reason remains unclear. <b>Citation:</b> Macphail Mike, Pillans Brad, Hope Geoff, Clark Dan (2020) Extirpations and extinctions: a plant microfossil-based history of the demise of rainforest and wet sclerophyll communities in the Lake George basin, Southern Tablelands of NSW, south-east Australia. <i>Australian Journal of Botany </i>68, 208-228.

  • The National Seismic Hazard Assessment (NSHA) is a flagship Geoscience Australia product, used to support the decisions of the Australian Building Codes Board Standards Subcommittee BD-006-11, to ensure buildings and infrastructure are built to withstand seismic events in Australia. The NSHA has been updated in 2018 and includes significant advances on previous assessments including: inclusion of epistemic uncertainty using third-party source models contributed by the Australian seismology community, use of modern ground-motion models, and more. As a consequence of these advances, estimates of seismic hazard have decreased significantly across most Australian localities at the return period (of earthquake ground shaking) currently used by the Australian Standard. The objective of this document is to outline the significant changes to the NSHA18 from the 2012 version, and the science behind these changes. The responses were developed through feedback and consultation with experts in the seismic and engineering industry. If you have additional questions, please contact the project team at hazards@ga.gov.au.

  • This Geoscience Australia Record contains technical data and input files that, when used with the Global Earthquake Model’s (GEM’s) OpenQuake-engine probabilistic seismic hazard analysis software (Pagani et al., 2014), will enable end users to explore and reproduce the 2018 National Seismic Hazard Assessment (NSHA18) of Australia (Allen et al., 2018a). This report describes the NSHA18 input data only and does not discuss the scientific rationale behind the model development. These details are provided in Allen et al. (2018a) and references therein.

  • <div>The presence of Pliocene marine sediments in the Myponga and Meadows basins within the Mt Lofty Ranges south of Adelaide is testament to over 200&nbsp;m of tectonic uplift within the last 5 Myr (e.g., Sandiford 2003, Clark 2014). The spatiotemporal distribution of uplift amongst the various faults within the range and along the range fronts is poorly understood. Consequently, large uncertainties are associated with estimates of the hazard that the faults pose to proximal communities and infrastructure.</div><div>&nbsp;</div><div>We present the preliminary results of a paleoseismic investigation of the southern Willunga Fault, ~40 km south of Adelaide. Trenches were excavated across the fault to examine the relationships between fault planes and sedimentary strata. Evidence is preserved for 3-5 ground-rupturing earthquakes since the Middle to Late Pleistocene, with single event displacements of 0.5 – 1.7 m. Dating of samples will provide age constraints on the timing of these earthquakes. This most recent part of the uplift history may then be related to the longer-term landscape evolution evidenced by the uplifted basins, providing an enhanced understanding of the present-day seismic hazard.</div> This abstract was presented at the Australian & NZ Geomorphology Group (ANZGG) Conference in Alice Springs 26-30 September 2022. https://www.anzgg.org/images/ANZGG_2022_First_circular_Final_V3.pdf