From 1 - 7 / 7
  • The ca. 1.4 Ga Roper Group of the greater McArthur Basin in northern Australia comprises the sedimentary fill of one of the most extensive Precambrian hydrocarbon-bearing basins preserved in the geological record. It is interpreted to have been deposited in a large epeiric sea known as the Roper Seaway. Trace element data suggest that the redox structure of the basin was a shallow oxic layer overlying deeper suboxic to anoxic waters along with a prominent episode of euxinia. These anoxic and sulfidic conditions, as inferred by redox sensitive trace element (TE) abundances, (molybdenum, vanadium and uranium), developed due to high organic carbon loading consistent with models that suggest that euxinic conditions cannot develop until the flux of organic matter is significantly greater than the flux of bioavailable iron (Fe<sup>3+</sup>), which permits sulphate reduction to proceed. Considering the high reactive iron and molybdenum contents of these shales and the requirement for S/Fe ratios >2 for euxinia to develop, suggest sufficient atmospheric O<sub>2</sub> was available for oxidative scavenging of S and Mo from the continents. This is further supported by prominent negative cerium anomalies within these shales, indicative of active oxidative redox cycling of cerium. We propose that the high organic matter flux was the result of increased nutrient loading to the Roper Seaway from weathering of the continental hinterland. Data from both major and high-field strength elements (niobium, tantalum, zirconium and, hafnium) together with neodymium isotopes (<sup>143</sup>Nd/<sup>144</sup>Nd) indicate that a likely mechanism for this enhanced nutrient delivery was a shift in sedimentary provenance to a more primitive (i.e. mafic) precursor lithology. This switch in provenance would have increased phosphorus delivery to the Roper Seaway, contributing to high primary productivity and the onset of euxinia. This dataset and model serve as a basis for understanding the temporal evolution of the deepest sections of the Roper Seaway and finer scale changes in the environment at this time. <b>Citation:</b> Grant M. Cox, Amber Jarrett, Dianne Edwards, Peter W. Crockford, Galen P. Halverson, Alan S. Collins, André Poirier, Zheng-Xiang Li, Basin redox and primary productivity within the Mesoproterozoic Roper Seaway, <i>Chemical Geology</i>, Volume 440, 2016, Pages 101-114, ISSN 0009-2541, https://doi.org/10.1016/j.chemgeo.2016.06.025.

  • This report presents key results from the Upper Burdekin Groundwater Project conducted as part of Exploring for the Future (EFTF)—an eight year Australian Government funded geoscience data and information acquisition program. The first four years of the Program (2016–20) aimed to better understand the potential mineral, energy and groundwater resources in northern Australia. The Upper Burdekin Groundwater Project focused on the McBride Basalt Province (MBP) and Nulla Basalt Province (NBP) in the Upper Burdekin region of North Queensland. It was undertaken as a collaborative study between Geoscience Australia and the Queensland Government. This document reports the key findings of the project, as a synthesis of the hydrogeological investigation project and includes maps and figures to display the results.

  • The WOfS summary statistic represents, for each pixel, the percentage of time that water is detected at the surface relative to the total number of clear observations. Due to the 25-m by 25-m pixel size of Landsat data, only features greater than 25m by 25m are detected and only features covering multiple pixels are consistently detected. The WOfS summary statistic was produced over the McBride and Nulla Basalt provinces for the entire period of available data (1987 to 2018). Pixels were polygonised and classified in order to visually enhance key data in the imagery. Areas depicted in the dataset have been exaggerated to enable visibility.

  • The WOfS summary statistic represents, for each pixel, the percentage of time that water is detected at the surface relative to the total number of clear observations. Due to the 25-m by 25-m pixel size of Landsat data, only features greater than 25m by 25m are detected and only features covering multiple pixels are consistently detected. The WOfS summary statistic was produced over the McBride and Nulla Basalt provinces for the entire period of available data (1987 to 2018). Pixels were polygonised and classified in order to visually enhance key data in the imagery. Areas depicted in the dataset have been exaggerated to enable visibility.

  • We present a multifaceted hydrogeological investigation of the McBride and Nulla basalt provinces in the Upper Burdekin region, north Queensland. The project aims to better understand their key groundwater system processes to inform future development and water management decisions. This work, carried out as part of the Exploring for the Future Upper Burdekin Groundwater Project, has shown that basalt aquifers in each province are typically unconfined where monitored. Groundwater recharge is widespread but highly variable, largely occurring within the boundaries of the basalt provinces. Groundwater salinity based on electrical conductivity is <1000 μS/cm in the McBride Basalt Province (MBP) and up to 2000 μS/cm in the Nulla Basalt Province (NBP). Groundwater levels have been declining since 2011 (following major flooding in Queensland), showing that the study period covers a small fraction of a longer-functioning dynamic groundwater system. The basalt provinces contain distinct lava flows, and the degree of hydraulic connectivity between them is unclear. Despite similarities in their rock properties, the geometry of lava emplacement leads to different groundwater flow regimes within the two basalt provinces. Radial flow away from the central high elevations towards the edges is characteristic of the MBP, while regional flow from west to east dominates the NBP. Basalt aquifers in both provinces support a range of groundwater-dependent ecosystems, such as springs, some of which sustain flow in tributaries of the Burdekin River. Where streams intersect basalt aquifers, this also results in direct groundwater discharge. Springs and perennial tributaries, particularly emanating from the MBP, provide important inflows to the Burdekin River, especially in the dry season. This work has highlighted that management of MBP and NBP groundwater sources is crucial for maintaining a range of environmental assets in the region and for ensuring access for existing and future users. <b>Citation:</b> Ransley, T.R., Dixon-Jain, P., Cook, S.B., Lai, E.C.S., Kilgour, P., Wallace, L., Dunn, B., Hansen, J.W.L. and Herbert, G., 2020. Hydrogeology of the McBride and Nulla basalt provinces in the Upper Burdekin region, north Queensland. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • The Tasselled Cap Wetness (TCW) percentage exceedance composite represents the behaviour of water in the landscape, as defined by the presence of water, moist soil or wet vegetation at each pixel through time. The summary shows the percentage of observed scenes where the Wetness layer of the Tasselled Cap transform is above the threshold, i.e. where each pixel has been observed as ‘wet’. Areas that retain surface water or wetness in the landscape during the dry season are potential areas of groundwater discharge and associated GDEs. The TCW exceedance composite was classified into percentage intervals to distinguish areas that were wet for different proportions of time during the 2013 dry season. Areas depicted in the dataset have been exaggerated to enable visibility.

  • The Tasselled Cap Wetness (TCW) percentage exceedance composite represents the behaviour of water in the landscape, as defined by the presence of water, moist soil or wet vegetation at each pixel through time. The summary shows the percentage of observed scenes where the Wetness layer of the Tasselled Cap transform is above the threshold, i.e. where each pixel has been observed as ‘wet’. Areas that retain surface water or wetness in the landscape during the dry season are potential areas of groundwater discharge and associated GDEs. The TCW exceedance composite was classified into percentage intervals to distinguish areas that were wet for different proportions of time during the 2013 dry season. Areas depicted in the dataset have been exaggerated to enable visibility.