From 1 - 10 / 15
  • This web service provides access to datasets produced by the mineral potential assement of iron oxide-copper-gold (IOCG) mineral systems in the Tennant Creek – Mt Isa region. The mineral potential assessment uses a 2D, GIS-based workflow to qualitatively map four key mineral system components: (1) Sources of metals, fluids and ligands, (2) Energy to drive fluid flow, (3) Fluid flow pathways and architecture, and (4) Deposition mechanisms, such as redox or chemical gradients. For each of these key mineral system components theoretical criteria, representing important ore-forming processes, were identified and translated into mappable proxies using a wide range of input datasets. Each of these criteria are weighted and combined using an established workflow to produce the final map of IOCG potential.

  • The Australian Geoscience Data Cube has won the 2016 Content Platform of the Year category at the Geospatial World Leadership Awards. The awards recognise significant contributions made by champions of change within the global geospatial industry and were presented during the 2017 Geospatial World Forum held in Hyderabad, India. The Data Cube was developed by Geoscience Australia in partnership with the CSIRO and the National Computational Infrastructure at the Australian National University, and is a world-leading data analysis system for satellite and other Earth observation data. Visit www.datacube.org.au to find out more including the technical specifications, and learn how you can develop your own Data Cube and become part of the collective.

  • This web service provides access to datasets produced by the mineral potential assement of iron oxide-copper-gold (IOCG) mineral systems in the Tennant Creek – Mt Isa region. The mineral potential assessment uses a 2D, GIS-based workflow to qualitatively map four key mineral system components: (1) Sources of metals, fluids and ligands, (2) Energy to drive fluid flow, (3) Fluid flow pathways and architecture, and (4) Deposition mechanisms, such as redox or chemical gradients. For each of these key mineral system components theoretical criteria, representing important ore-forming processes, were identified and translated into mappable proxies using a wide range of input datasets. Each of these criteria are weighted and combined using an established workflow to produce the final map of IOCG potential.

  • This web service provides access to datasets produced by the mineral potential assement of iron oxide-copper-gold (IOCG) mineral systems in the Tennant Creek – Mt Isa region. The mineral potential assessment uses a 2D, GIS-based workflow to qualitatively map four key mineral system components: (1) Sources of metals, fluids and ligands, (2) Energy to drive fluid flow, (3) Fluid flow pathways and architecture, and (4) Deposition mechanisms, such as redox or chemical gradients. For each of these key mineral system components theoretical criteria, representing important ore-forming processes, were identified and translated into mappable proxies using a wide range of input datasets. Each of these criteria are weighted and combined using an established workflow to produce the final map of IOCG potential.

  • <p>Iron oxide-copper-gold (IOCG) mineral systems are a desirable undercover exploration target due to their large alteration footprint and potentially high metal content. To assist in understanding the potential for IOCG mineral systems beneath cover in the Tennant Creek to Mount Isa region as part of Exploring for the Future, a predictive mineral potential assessment has been undertaken using a knowledge-based, mineral systems approach.<p>This mineral potential assessment uses a 2D, GIS-based workflow to qualitatively map four key mineral system components: (1) Sources of metals, fluids and ligands, (2) Energy to drive fluid flow, (3) Fluid flow pathways and architecture, and (4) Deposition mechanisms, such as redox or chemical gradients. For each of these key mineral system components theoretical criteria, representing important ore-forming processes, were identified and translated into mappable proxies using a wide range of input datasets. Each of these criteria are weighted and combined using an established workflow to produce the final map of IOCG potential, all of which is well documented in the accompanying IOCG Assessment Criteria Table.<p>Two assessments have been undertaken. The first is a comprehensive assessment containing all available geospatial information and is highly reliant on the level of geological knowledge. As such, it preferentially highlights mineral potential in well-understood areas, such as outcropping regions and performs less well in covered areas, where there is a greater likelihood of data gaps. The second assessment utilises only datasets which can be mapped consistently across the assessment area. As such, these are predominately based on geophysical data and are more consistent in assessing exposed and covered areas. However, far fewer criteria are included in this assessment.<p>Both assessment highlight new areas of interest in underexplored regions, of particular interest a SW-NE corridor to the East of Tennant Creek of moderate/high potential in the Barkly region. This corridor extends to an area of moderate potential in the Murphy Inlier region near the Gulf of Carpentaria on the NT/QLD border.

  • This brochure gives an overview of Geoscience Australia's priority programs: Exploring for the Future, Digital Earth Australia and Positioning Australia;

  • Geoscience Australia's value to the nation, outlined in its Strategy 2028 decadal plan, is through its science. However, the way that the organisation applies its science and achieves impact cannot be taken for granted. Science Strategy 2028, launched in late-2021, presents a guiding strategic framework for delivering the science that underpins our core business. This Science Strategy outlines the organisation's longstanding Science Principles as a business imperative and as key tenets for maintaining Geoscience Australia's standing as the nation’s trusted advisor on Australia’s geoscience and geography. Through the Science Strategy, Geoscience Australia will continue to integrate and achieve the six Science Principles through its business: to deliver relevant, collaborative, quality, transparent and communicated science, with a view to sustain our scientific capability.

  • The Science Strategy 2028 Implementation Plan outlines the activities and actions across Geoscience Australia, led by the Chief Scientist, to operationalise the 'key implementations' of Science Strategy 2028. The discrete activities articulated in this Implementation Plan stem from mapping the six Science Principles against Geoscience Australia's Strategy 2028 Core Commitments. The Implementation Plan outlines the context and strategic rationale for a range of Geoscience Australia's activities led through the Office of the Chief Scientist, including the Science Evaluations, scientific capability and capacity mapping, and geoscientific engagement with First Nations communities and perspectives.

  • <div>Students can access and analyse real world earthquake data using online portals created by Geoscience Australia (GA) (Geoscience Australia data portal and Earthquakes@GA). The document provides background information for teachers about earthquakes and the online portals, as well as two student inquiry activities. Each activity includes instructions on how to access and use the relevant portal as well as questions that prompt students to find, record, and interpret the data. An Excel table is provided to accompany one of the activities.</div><div><br></div><div>The activities are suitable for use with secondary to senior secondary science and geography students. The topics covered in these activities include: earthquakes, plate tectonics and natural hazards.</div><div><br></div><div>The print version has lines provided for written answers, the accessible version is intended for digital responses. </div>

  • <div>These videos provide tutorials on how to use the Geoscience Australia Data portal in the classroom. They include a guide for basic navigation, how to load 2D map data sets (elevation, surface geology and critical minerals) as well as accessing a 3D data model (earthquakes).&nbsp;Additionally, they demonstrate how to directly compare multiple data and how to share collated data through a shareable link.</div><div>Videos included:</div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Introduction to using the Geoscience Australia Data Portal (2:15)</div><div>-&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;How to access elevation, surface geology and critical minerals data in the Geoscience Australia Data Portal (4:26)</div><div>- How to view the global distribution of earthquakes using the Geoscience Australia Data Portal (2:51)</div><div><br></div><div>These videos are suitable for use by secondary students and adults.</div>