From 1 - 10 / 14
  • Geoscience Australia, in partnership with State and Territory Geological Surveys and research organisations, has applied the magnetotelluric (MT) method to image the resistivity structure of the Australian continent over the last decade. Data have been acquired at nearly 5000 stations through the collaborative national AusLAMP survey and regional MT surveys. The data provide valuable information for multi-disciplinary interpretations that incorporate various datasets. Most of these MT data have been released to the public. To date, AusLAMP has been completed ~30% of the national coverage. Data have been acquired at nearly 1000 stations. This pre-competitive dataset will be an essential input to Geoscience Australia’s Exploring for the Future program as well as a valuable resource for researchers to reconstruct the tectonic evolution of the Australian continent. The regional MT surveys have been undertaken across potential mineral/energy provinces and greenfields areas in the Australia continent. A number of regional surveys have been completed recently. The MT data from the poorly understood Southern Thomson Orogen and Coompana region have improved understanding of cover thickness, sub-surface geology, and crustal architecture. The data reduce the uncertainty associated with intersecting the targeted stratigraphy for the pre-competitive stratigraphic drilling program. Comparison with drill-hole information indicates that the technique is capable of identifying major stratigraphic structures and providing cover thickness estimates with reasonable accuracy in regions where there is little surface outcrop and thick cover sequences. The MT data from the Mount Isa inlier in northern Australia provide new insights into basement architecture, the crustal architecture and resource potential in this region. The data reveal some crustal-scale conductivity anomalies which correspond to known major crustal boundaries and faults. Those faults and boundaries are considered the primary factors in the partitioning of mineralisation in the region, with some conductors in the upper crust coinciding with known mineral deposits. Presented at the 24th Electromagnetic Induction Workshop (EMIW) 13-20 August 2018, Helsingør Denmark (https://emiw2018.emiw.org/)

  • Water, energy and mineral resources are vital for Australia’s economic prosperity and sustainable development. However, continued supply of these resources cannot be taken for granted. It is widely accepted that the frontier of exploration now lies beneath the Earth’s surface, making characterisation of the subsurface a unifying challenge. Between 2016 and 2020, the $100.5 million Exploring for the Future program focused on addressing this challenge across northern Australia in order to better define resource potential and boost investment. The program applied a multiscale systems approach to resource assessment based on characterisation of the Australian plate from the surface down to its base, underpinned by methodological advances. The unprecedented scale and diversity of new data collected have resulted in many world-first achievements and breakthrough insights through integrated systems science. Through this multi-agency effort, new continental-scale datasets are emerging to further enhance Australia’s world-leading coverage. The program has identified prospective regions for a wide range of resources and pioneered approaches to exploration undercover that can be applied elsewhere. The outcomes so far include extensive tenement uptake for minerals and energy exploration in covered terranes, and development of informed land-management policy. Here, we summarise the key scientific achievements of the program by reviewing the main themes and interrelationships of 62 contributions, which together constitute the Exploring for the Future: extended abstracts volume. <b>Citation:</b> Czarnota, K., Roach, I.C., Abbott, S.T., Haynes, M.W., Kositcin, N., Ray, A. and Slatter, E., 2020. Exploring for the Future: advancing the search for groundwater, energy and mineral resources. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • <div>The interpretation of AusAEM airborne electromagnetic (AEM) survey conductivity sections in the Canning Basin region delineates the geo-electrical features that correspond to major chronostratigraphic boundaries, and captures detailed stratigraphic information associated with these boundaries. This interpretation forms part of an assessment of the underground hydrogen storage potential of salt features in the Canning Basin region based on integration and interpretation of AEM and other geological and geophysical datasets. A main aim of this work was to interpret the AEM to develop a regional understanding of the near-surface stratigraphy and structural geology. This regional geological framework was complimented by the identification and assessment of possible near-surface salt-related structures, as underground salt bodies have been identified as potential underground hydrogen storage sites. This study interpreted over 20,000 line kilometres of 20&nbsp;km nominally line-spaced AusAEM conductivity sections, covering an area approximately 450,000 km2 to a depth of approximately 500&nbsp;m in northwest Western Australia. These conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This interpretation produced approximately 110,000 depth estimate points or 4,000 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for Geoscience Australia’s Estimates of Geological and Geophysical Surfaces database, the national repository for formatted depth estimate points. Despite these interpretations being collected to support exploration of salt features for hydrogen storage, they are also intended for use in a wide range of other disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. Therefore, these interpretations will benefit government, industry and academia interested in the geology of the Canning Basin region.</div>

  • <div>Finding new mineral deposits hidden beneath the sedimentary cover of Australia has become a national priority, given the country’s economic dependence on natural resources and urgent demand for critical minerals for a sustainable future. A fundamental first step in finding new deposits is to characterise the depth of sedimentary cover. Excellent constraints on the sedimentary thickness can be obtained from borehole drilling or active seismic surveys. However, these approaches are expensive and impractical in the remote regions of Australia. With over three quarters of the continent being covered in sedimentary and unconsolidated material, this poses a significant challenge to exploration.</div><div><br></div><div>Recently, a method for estimating the sedimentary thickness using passive seismic data, the collection of which is relatively simple and low-cost, was developed and applied to seismic stations in South Australia. The method uses receiver functions, specifically the delay time of the P-to-S converted phase generated at the interface of the sedimentary basement, relative to the direct-P arrival, to generate a first order estimate of the thickness of sedimentary cover. In this work we apply the same method to the vast array of seismic stations across Australia, using data from broadband stations in both permanent and temporary networks.&nbsp;We also investigate using the two-way traveltime of shear waves, obtained from the autocorrelation of radial receiver functions, as a related yet separate estimate of sedimentary thickness.&nbsp;</div><div><br></div><div>From the new receiver function delay time and autocorrelation results we are able to identify many features, such as the relatively young Cenozoic Eucla and Murray Basins. Older Proterozoic regions show little signal, likely due to the strong compaction of sediments.&nbsp;A comparison with measurements of sedimentary thickness from local boreholes gives a straightforward predictive relationship between the delay time and the cover thickness, offering a simple and cheap way to characterise the sedimentary thickness in unexplored areas from passive seismic data. This study and some of the data used are funded and supported by the Australian Government's Exploring for the Future program led by Geoscience Australia. Abstract to be submitted to/presented at the American Geophysical Union (AGU) Fall Meeting 2023 (AGU23) - https://www.agu.org/fall-meeting

  • This service provides Estimates of Geological and Geophysical Surfaces (EGGS). The data comes from cover thickness models based on magnetic, airborne electromagnetic and borehole measurements of the depth of stratigraphic and chronostratigraphic surfaces and boundaries.

  • Building on newly acquired airborne electromagnetic and seismic reflection data during the Exploring for the Future (EFTF) program, Geoscience Australia (GA) generated a cover model across the Northern Territory and Queensland, in the Tennant Creek – Mount Isa (TISA) area (Figure 1; between 13.5 and 24.5⁰ S of latitude and 131.5 and 145⁰ E of longitude) (Bonnardot et al., 2020). The cover model provides depth estimates to chronostratigraphic layers, including: Base Cenozoic, Base Mesozoic, Base Paleozoic and Base Neoproterozoic. The depth estimates are based on the interpretation, compilation and integration of borehole, solid geology, reflection seismic, and airborne electromagnetic data, as well as depth to magnetic source estimates. These depth estimates in metres below the surface (relative to the Australian Height Datum) are consistently stored as points in the Estimates of Geophysical and Geological Surfaces (EGGS) database (Matthews et al., 2020). The data points compiled in this data package were extracted from the EGGS database. Preferred depth estimates were selected to ensure regional data consistency and aid the gridding. Two sets of cover depth surfaces (Bonnardot et al., 2020) were generated using different approaches to map megasequence boundaries associated with the Era unconformities: 1) Standard interpolation using a minimum-curvature gridding algorithm that provides minimum misfit where data points exist, and 2) Machine learning approach (Uncover-ML, Wilford et al., 2020) that allows to learn about relationships between datasets and therefore can provide better depth estimates in areas of sparse data points distribution and assess uncertainties. This data package includes the depth estimates data points compiled and used for gridding each surface, for the Base Cenozoic, Base Mesozoic, Base Paleozoic and Base Neoproterozoic (Figure 1). To provide indicative trends between the depth data points, regional interpolated depth surface grids are also provided for the Base Cenozoic, Base Mesozoic, Base Paleozoic and Base Neoproterozoic. The grids were generated with a standard interpolation algorithm, i.e. minimum-curvature interpolation method. Refined gridding method will be necessary to take into account uncertainties between the various datasets and variable distances between the points. These surfaces provide a framework to assess the depth and possible spatial extent of resources, including basin-hosted mineral resources, basement-hosted mineral resources, hydrocarbons and groundwater, as well as an input to economic models of the viability of potential resource development.

  • Effective mineral, energy and groundwater resource management and exploration rely on accurate geological maps. While geological maps of the surface exist and increase in resolution, maps of the subsurface are sparse, and the underpinning geological and geophysical constraints are disordered or non-existent. The Estimates of Geological and Geophysical Surfaces (EGGS) database seeks to enable robust subsurface geological mapping by establishing an ordered collection of precious geological and geophysical interpretations of the subsurface. EGGS stores the depth to geological boundaries derived from boreholes as well as interpretations of depth to magnetic top assessments, airborne electromagnetics inversions and reflection seismic profiles. Since geological interpretation is iterative, links to geophysical datasets and processing streams used to image the subsurface are stored. These metadata allow interpretations to be readily associated with the datasets from which they are derived and re-examined. The geological basis for the interpretation is also recorded. Stratigraphic consistency is maintained by linking each interpretation to the Australian Stratigraphic Units Database. As part of the Exploring for the Future program, >170 000 points were entered into the EGGS database. These points underpin construction of cover thickness models and economic fairway assessments. <b>Citation:</b> Mathews, E.J., Czarnota, K., Meixner, A.J., Bonnardot, M.-A., Curtis, C., Wilford, J., Nicoll, M.G., Wong, S.C.T., Thorose, M. and Ley-Cooper, Y., 2020. Putting all your EGGS in one basket: the Estimates of Geological and Geophysical Surfaces database. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • The Exploring for the Future program Virtual Roadshow was held on 7 July and 14-17 July 2020. The Minerals session of the roadshow was held on 14 July 2020 and consisted of the following presentations: Introduction - Richard Blewett Preamble - Karol Kzarnota Surface & Basins or Cover - Marie-Aude Bonnardot Crust - Kathryn Waltenberg Mantle - Marcus Haynes Zinc on the edge: New insights into sediment-hosted base metals mineral system - David Huston Scale reduction targeting for Iron-Oxide-Copper-Gold in Tennant Creek and Mt Isa - Anthony Schofield and Andrew Clark Economic Fairways and Wrap-up - Karol Czarnota

  • <div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. This work contributes to building a better understanding of the Australian continent, whilst giving the Australian public the tools they need to help them make informed decisions in their areas of interest.</div><div><br></div><div>As part of the Australia's Resources Framework Project, in the Exploring for the Future Program, Geoscience Australia and CSIRO undertook a magnetic source depth study across four areas, with the objectives of generating cover model constraints from magnetic modelling to expand national coverage, and to improve our subsurface understanding of these areas. During this study, 2005 magnetic estimates of depth to the top of magnetization were generated, with solutions derived using a consistent methodology (targeted magnetic inversion modelling, or TMIM; also known as ‘sweet-spot’ modelling). The methodology for these estimates are detailed in a summary report by Foss et al (2024), and is available for download through Geoscience Australia’s enterprise catalogue (https://pid.geoscience.gov.au/dataset/ga/149239). </div><div><br></div><div>The new points were generated over four areas: 1) the western part of Tasmania that is the southernmost extension of the Darling-Curnamona-Delamerian (DCD) project area; 2) northeastern Queensland; 3) the Officer Basin area of western South Australia and southeastern West Australia; and 4) the Eastern Resources Corridor (ERC), covering eastern South Australia, southwest Queensland, western New South Wales and western Victoria. These depth estimates have been released, together with a summary report detailing the data and methodology used to generate the results, through Geoscience Australia's product catalogue (ecat) at https://pid.geoscience.gov.au/dataset/ga/149239.</div><div><br></div><div>This supplementary data release contains the chronostratigraphic attribution of the new TMIM magnetic depth estimates, which range in depth from at surface to 13,294 m below ground. To ensure that the interpretations took into account the local geological features, the magnetic depth estimates were integrated and interpreted with other geological and geophysical datasets, including borehole stratigraphic logs, potential fields images, surface and solid geology maps, and airborne electromagnetic interpretations (where available). </div><div><br></div><div>Each depth-solution is interpretively ascribed to either a chronostratigraphic boundary with the stratigraphic units above and below the depth estimate, or the stratigraphic unit that the depth estimate occurs within, populated from the Australian Stratigraphic Units Database (ASUD). Stratigraphic attribution adds value and informs users of the depth to certain stratigraphic units in their areas of interest. Each solution is accompanied by confidence estimates. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div><br></div><div>Results from these interpretations provided some support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The magnetic depth-estimate solutions produced within this study provide important depth constraints in data-poor areas. These data help to construct a better understanding of the 3D geometry of the Australian continent and aid in cover thickness modelling activities. The availability of the depth-estimate solutions via the EGGS database through Geoscience Australia’s Portal creates enduring value to the public.</div>

  • It is increasingly recognised that, to maintain a sustainable pipeline of mineral resources in Australia, future discoveries will need to be made in areas obscured by more recent cover sequences. A major challenge to mineral exploration in covered frontiers is identifying new prospective fairways, and understanding and mapping important metallogenic processes at a range of scales to enable more effective targeting of exploration. Here, we present evidence for a completely buried corridor of interpreted high prospectivity—the East Tennant region—based on synthesis and integration of a diverse range of geoscientific datasets. Key indicators of the region’s potential include lithospheric-scale architecture, elevated electrical conductivity in the crust and mantle, and modelled and demonstrated hydrothermal alteration in the near surface. Multiscale geophysical surveys show evidence for crustal-scale fluid flow along major structures, connecting the mantle with the surface. Although few geological constraints exist in this region, examination of legacy drillcore and geochronology results demonstrates a similar history to rocks known to host mineralisation across the North Australian Craton. These results provide tantalising indications that the under-explored East Tennant region has significant potential to host major mineral systems. <b>Citation: </b>Schofield, A., Clark, A., Doublier, M.P., Murr, J., Skirrow, R., Goodwin, J., Cross, A. J., Pitt, L., Duan, J., Jiang, W., Wynne, P., O’Rourke, A., Czarnota, K., and I. C. Roach., 2020. Data integration for greenfields exploration: an example from the East Tennant region, Northern Territory. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.