From 1 - 10 / 30
  • AusLAMP is a collaborative national project to cover Australia with long-period magnetotelluric (MT) data in an approximately 55 km spaced array. Signatures from past tectonothermal events can be retained in the lithosphere for hundreds of millions of years when these events deposit conductive mineralogy that is imaged by MT as electrically conductive pathways. MT also images regions of different bulk conductivity and can help to understand the continuation of crustal domains down into the mantle, and address questions on the tectonic evolution of Australia. The AusLAMP data presented here were collected as part of three separate collaborative projects involving several organisations. Geoscience Australia (GA), the Geological Survey of South Australia, the Geological Survey of New South Wales, the Geological Survey of Victoria, and the University of Adelaide all contributed staff and/or funding to collection of AusLAMP data; GA and AuScope contributed instrumentation. The data cover the Paleo-Mesoproterozoic Curnamona Province, the Neoproterozoic Flinders Ranges, and the Cambrian Delamerian Orogen, encompassing eastern South Australia and western New South Wales and western Victoria. This project represents the first electrical resistivity model to image the entire Curnamona Province and most of the onshore extent of the Delamerian Orogen, crossing the geographical state borders between South Australia, New South Wales and Victoria.

  • As global metal demands are increasing whilst new discoveries are declining, the magnetotelluric (MT) technique has shown promise as an effective technique to aid mineral systems mapping. Several case studies have shown a spatial correlation between mineral deposits and conductors, with some showing that resistivity models derived from MT are capable of mapping mineral systems from the lithosphere to deposit scale. However, until now, the statistical significance of such correlations has not been demonstrated and therefore hindered robust utilization of MT data in mineral potential assessments. Here we quantitatively analyze resistivity models from Australia, the United States of America (USA), South America and China and demonstrate that there is a statistically-significant correlation between upper mantle conductors and porphyry copper deposits, and between mid-crustal conductors and orogenic gold deposits. Volcanic hosted massive sulfide deposits show significant correlation with upper mantle conductors in Australia. Differences in the correlation pattern between these deposit types likely relate to differences in the chemistry, redox state and location of source mineralizing fluids and magmas, and indicate signatures of mineral system processes can be preserved in the crust and mantle lithosphere for hundreds of millions of years. Appeared in Scientific Reports volume 12, Article number: 8190 (2022), 17 May 2022

  • The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) aims to collect long period magnetotelluric data on a half degree (~55 km) grid across the Australian continent. New datasets have been collected in Northern Australia, as part of Geoscience Australia’s Exploring for the Future (EFTF) program with in-kind contributions from the Northern Territory Geological Survey and the Geological Survey of Queensland. This web service depicts the location of the 155 sites which were used in this study.

  • The AusLAMP-Victoria magnetotelluric survey was a collaborative project between the Geological Survey of Victoria and Geoscience Australia. Long period magnetotelluric data were acquired at 100 sites on a half degree grid spacing across Victoria in the south-east of Australia between December 2013 and September 2014. Some repeated sites were acquired in December 2017. Geoscience Australia managed the project and performed data acquisition, data processing, and data QA/QC. In this record, the field acquisition, data QA/QC, and data processing methodologies are discussed. A separate report will provide information on data analysis, data modelling/inversion, and data interpretation.

  • This OGC compliant service provides access to magnetotelluric data and associated products, which have been produced by Geoscience Australia’s Magnetotelluric Program. This program includes regional magnetotelluric projects and the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), a collaborative project between Geoscience Australia, the State and Northern Territory geological surveys, universities, and other research organisations. The data provided in this service comprise resistivity model depth sections and the locations of sites used in these studies.

  • <p>The Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) aims to collect long period magnetotelluric data on a half degree (~55 km) grid across the Australian continent. New datasets have been collected in Northern Australia, as part of Geoscience Australia’s Exploring for the Future (EFTF) program with in-kind contributions from the Northern Territory Geological Survey and the Queensland Geological Survey. <p>This release includes preliminary AusLAMP models in an under-explored region between Tennant Creek in the Northern Territory and Cloncurry in Queensland. Long period magnetotelluric data from 155 sites were used in this model. Magnetotelluric data acquisition in this region continues. The preliminary model results provide new insights to the lithospheric architecture and mineralisation in the region. There is a connection between conductive anomalies, large-scale lithospheric boundaries and the distribution of mineral deposits.

  • <div>This document describes Geoscience Australia’s standard operating procedure for acquiring long-period magnetotelluric (MT) data using equipment supplied by LEMI LLC. It is current as at April 2024. Users should check periodically for updated versions.</div><div><br></div><div>The procedure is based on the use of the LEMI-424 magnetotelluric station, comprising:</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;LEMI-424 data logger</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;LEMI-039 3-component analog magnetometer and cable</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;LEMI-701 electrodes</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;GPS receiver</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;electric-line interface box</div><div><br></div><div>Geoscience Australia supplements this equipment with the addition of:</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;a Pelican equipment box to hold and transport the equipment</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;an acrylic housing to protect the LEMI-039 magnetometer</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;four 50&nbsp;m electrode cables</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;a brass earth stake and cable</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;a 12&nbsp;V battery</div><div>·&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;a solar panel</div><div><br></div>

  • Geoscience Australia (GA), in partnership with State (SA, NSW, VIC, QLD, WA and TAS) and Northern Territory Geological Surveys, has applied the magnetotelluric (MT) technique to image the resistivity structure of the Australian continent over the last decade. Data have been acquired at nearly 5000 stations across Australia through a national MT survey program and regional MT surveys. Most of the data are available at GA’s website. These data provided valuable information for multi-disciplinary interpretations that incorporate various datasets. This release package includes ArcGIS shape files and Excel files of MT station locations for the completed AusLAMP and regional surveys up to December 2017.

  • <div>Geoscience Australia’s Exploring for the Future program (EFTF) provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div>One main component of the EFTF program is the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), which is a collaborative national survey by federal government, state and territory governments, and research organizations since late 2013. The project acquires long-period magnetotelluric data on a half-degree grid spacing across Australia and provides first order electrical conductivity/resistivity structure of the Australian continental lithosphere. This reconnaissance dataset improves the understanding of lithospheric structures and tectonic evolution of Australian plate. It provides a framework and a bottom-up approach to identify newly resource potential regions for infill surveys and further study. The dataset also uses for assessment and prediction of geomagnetic storm’s nature hazards. </div><div><br></div><div>This data release contains a 3D resistivity model and site locations. The 3D model was derived from publicly available AusLAMP data in Australia (excluding western Australia). The model was projected to GDA94 MGA Zone 54 and was converted into SGrid/ASCII format and geo-referenced TIFF format.</div><div><br></div><div>We acknowledge the traditional custodians of the country where the data were collected. We also acknowledge the support provided by individuals and communities for land access and data acquisition, without whose cooperation these data could not have been collected. The 3D model was produced on the National Computational Infrastructure, which is supported by the Australian government.</div><div><br></div>

  • The NSW component of the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP), is a collaboration between Geoscience Australia and the Geological Survey of New South Wales which commenced in 2016. Long-period MT data have been recorded at a 55-km spacing in a rolling deployment which to date has completed 224 of a planned 320 sites in NSW. This article summarises the progress of the AusLAMP NSW program and highlights how it is contributing to our understanding of the tectonic architecture in NSW.