critical minerals
Type of resources
Keywords
Publication year
Service types
Topics
-
The importance of critical minerals and the need to expand and diversify critical mineral supply chains has been endorsed by the Federal governments of Australia, Canada, and the United States. The geoscience organizations of Geoscience Australia, the Geological Survey of Canada and the U.S. Geological Survey have created the Critical Minerals Mapping Initiative to build a diversified critical minerals industry in Australia, Canada, and the United States by developing a better understanding of known critical mineral resources, determining geologic controls on critical mineral distribution for deposits currently producing byproducts, identifying new sources of supply through critical mineral potential mapping and quantitative mineral assessments, and promoting critical mineral discovery in all three countries.
-
Critical minerals are pivotal to human society in industrialised and developing economies. Many critical minerals are irreplaceable inputs for technological and industrial advancements, especially renewable energy systems, electric vehicles, rechargeable batteries, consumer electronics, telecommunications, specialty alloys, and defence technologies. Critical minerals are metals, non-metals and mineral compounds that are economically important and are also subject to high risks of supply. “Criticality” is a subjective concept; countries develop their own lists of critical minerals based on the relative importance of particular minerals to their industrial needs and strategic assessment of supply risks. Lists are reviewed and changed over time. Commonly appearing on lists of high criticality are: antimony, barite, beryllium, bismuth, cesium, chromium, cobalt, germanium, indium, lithium, manganese, niobium, platinum-group elements (PGE), potash, rare earth elements (REE), rhenium, rubidium, scandium, strontium, tantalum, tellurium, rhenium, tungsten, and vanadium. The supply of critical minerals is an area of great growth potential, based on increasing technological demands and uses at a global level. Australia is one of the world’s principal producers of several key major mineral commodities (e.g. bauxite, coal, copper, lead, gold, ilmenite, iron ore, nickel, rutile, zircon, and zinc). Although some critical minerals are mined as primary products (e.g. REE, lithium, potash), many critical minerals are extracted as companion products from base or precious metal production (e.g. PGE from nickel sulfide ores, or indium from zinc concentrate). Considering that Australia has leading expertise in mining and metallurgical processing as well as extensive mineral resources likely to contain critical minerals, there is a clear opportunity for Australia to develop into a major, transparent and reliable supplier of critical minerals for the global economy. Based on a conservative estimate, Australia could add approximately $9.4 billion of value to the nation's mineral and metal production (currently valued at $112.2 billion, or an increase of about 8%) through the production of four critical commodities (hafnium, niobium, rare earth elements and scandium) from existing mines and favourable deposits. Full realisation of this and potentially even greater production is significantly affected by other factors, including: insufficient knowledge of critical minerals in Australian deposits and their behaviour during metallurgical processing due to limited reporting by industry; few geological studies dedicated to assessing and facilitating the discovery of critical mineral resources in Australia; the need for new mining technology and services to economically extract critical minerals; gaps in capabilities of domestic smelters/refineries to process critical minerals. These issues require further research and investigation in order for Australia to maximise its position in global critical minerals markets. This study was commissioned by Geoscience Australia in collaboration with RMIT and Monash University to summarise key aspects of the current state of critical minerals in Australia. The report covers: global demand and supply; Australia’s resource potential; an overview of ‘criticality’ assessment methods; estimates of potential economic value; and future research needs for critical minerals in Australia.
-
<div>Disruptions to the global supply chains of critical raw materials (CRM) have the potential to delay or increase the cost of the renewable energy transition. However, for some CRM, the primary drivers of these supply chain disruptions are likely to be issues related to environmental, social, and governance (ESG) rather than geological scarcity. Herein we combine public geospatial data as mappable proxies for key ESG indicators (e.g., conservation, biodiversity, freshwater, energy, waste, land use, human development, health and safety, and governance) and a global dataset of news events to train and validate three models for predicting “conflict” events (e.g., disputes, protests, violence) that can negatively impact CRM supply chains: (1) a knowledge-driven fuzzy logic model that yields an area under the curve (AUC) for the receiver operating characteristics plot of 0.72 for the entire model; (2) a naïve Bayes model that yields an AUC of 0.81 for the test set; and (3) a deep learning model comprising stacked autoencoders and a feed-forward artificial neural network that yields an AUC of 0.91 for the test set. The high AUC of the deep learning model demonstrates that public geospatial data can accurately predict natural resources conflicts, but we show that machine learning results are biased by proxies for population density and likely underestimate the potential for conflict in remote areas. Knowledge-driven methods are the least impacted by population bias and are used to calculate an ESG rating that is then applied to a global dataset of lithium occurrences as a case study. We demonstrate that giant lithium brine deposits (i.e., >10 Mt Li2O) are restricted to regions with higher spatially situated risks relative to a subset of smaller pegmatite-hosted deposits that yield higher ESG ratings (i.e., lower risk). Our results reveal trade-offs between the sources of lithium, resource size, and spatially situated risks. We suggest that this type of geospatial ESG rating is broadly applicable to other CRM and that mapping spatially situated risks prior to mineral exploration has the potential to improve ESG outcomes and government policies that strengthen supply chains. <b>Citation:</b> Haynes M, Chudasama B, Goodenough K, Eerola T, Golev A, Zhang SE, Park J and Lèbre E (2024) Geospatial Data and Deep Learning Expose ESG Risks to Critical Raw Materials Supply: The Case of Lithium. <i>Earth Sci. Syst. Soc. </i>4:10109. doi: 10.3389/esss.2024.10109
-
<div>Critical minerals are the minerals and elements essential for modern technologies, economies and national security. However, the supply chains of these minerals may be vulnerable to disruption thereby making the study of these minerals, from source to product, of primary importance. </div><div><br></div><div>The global transition to net-zero emissions is driving accelerated consumption of critical minerals, particularly driven by the increase in demand for technologies such as solar photovoltaics (PV) and semiconductors (Department of Industry, Science and Resources [DISR], 2022; 2023). In parallel, the phasing out of, for example, traditional machinery and manufacturing processes reliant on hydrocarbon resources (Ali et al., 2017; Bruce et al., 2021; International Energy Agency [IEA], 2021; 2023; Skirrow et al., 2013) is further adding to the global demand. High Purity Quartz (HPQ) forms just one of these critical minerals, and is the primary raw material for the production of High Purity Silica (HPS) and Silicon (Si) for use in products ranging from solar PVs to semiconductors. </div><div><br></div><div>The current list of minerals classified as critical is now up to 31 (Department of Industry, Science and Resources [DISR], 2022; 2023). This diversity of critical minerals is also promoting a new focus on the exploration for i) new styles of mineralisation that might host sufficient volumes of critical minerals, and ii) a re-examination of existing minerals systems knowledge in order to help mineral explorers make new discoveries to help support the increasing demand. </div><div><br></div><div>At present, the main global suppliers of HPQ are the United States, Canada, Norway, Brazil, Russia and India (Pan et al., 2022). In Australia, there has been a paucity of exploration and development of HPQ mineral deposits and, despite the potential that Australia holds for the exploration and discovery of potentially significant HPQ occurrences, Simcoa Operations Pty Ltd. (Figure 1) represents the only operator currently mining HPQ, and the only manufacturer of high purity silicon in Australia (Simcoa, 2020). </div><div><br></div><div>Australia is well-positioned to incentivise the exploration, discovery and supply of raw materials, and significantly expand onshore silicon production capacity (PricewaterhouseCoopers, 2022). Research presented here highlights the opportunity that Australia has in making a positive contribution to meeting the global demand for HPQ required for high-technology applications and the transition to a net zero economy. </div><div><br></div>Abstract presented at the 2024 Annual Geoscience Exploration Seminar (AGES)
-
High-purity quartz (HPQ) is the only naturally occurring and economically viable source for the production of silicon. Silicon is a critical mineral, and a key component in modern technologies such as semiconductors and photovoltaic cells. Critical minerals support the move towards a greater reliance on electrification, renewable energy sources and economic security. The global transition to net zero carbon emissions means there is a growing need for new discoveries of HPQ to supply the silicon production chain. HPQ deposits are identified in a multitude of geological settings, including pegmatites, hydrothermal veins, sedimentary accumulations and quartzite; however, deposits of sufficient volume and quality are rare. Quartz is abundant throughout Australia, but the exploration and discovery of HPQ occurrences are notably under-reported, making assessment of the HPQ potential in Australia extremely difficult. This paper presents a much-needed summary of the state of the HPQ industry, exploration and deposit styles in Australia. KEY POINTS: 1. High-purity quartz (HPQ) is a key material for the manufacture of photovoltaic cells, semiconductors and other high-technology applications. 2. HPQ can be recovered from a variety of different source rocks in a range of geological settings. 3. Currently, the HPQ industry in Australia is under-utilised for high-technology applications, and historical exploration and mining records are under-reported and opaque. 4. This review presents an outline of the characteristics, processing requirements and end uses of HPQ, and a summary of the operations, deposits, exploration targets and known occurrences of HPQ in Australia. <b>Citation:</b> Jennings, A., Senior, A., Guerin, K., Main, P., & Walsh, J. (2024). A review of high-purity quartz for silicon production in Australia. <i>Australian Journal of Earth Sciences</i>, 1–13. https://doi.org/10.1080/08120099.2024.2362296
-
<div>This video gives an overview of the $225 million Exploring for the Future program (2016-2024), the Australian Government’s flagship precompetitive geoscience initiative. It uses cutting-edge technologies and approaches to deliver world-leading information about the geological structure, systems and evolution of the Australian continent.</div>
-
<div>This record one in a series of reports detailing the geochemical and mineralogical results of sampling collected at mine waste sites across Australia as part of Geoscience Australia's Exploring for the Future program. It presents new data and information on nickel, cobalt and rare earth elements at the Eloise copper mine located in the North West Minerals Province, Queensland. </div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div>
-
<div>This record one in a series of reports detailing the geochemical and mineralogical results of sampling collected at mine waste sites across Australia as part of Geoscience Australia's Exploring for the Future program. It presents new data and information regarding the tenor and deportment of indium, gallium, germanium, cadmium, antimony, and bismuth, as well as silver, lead, zinc, and copper at the Zeehan tailings site in western Tasmania.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div>
-
<div>Earth observation is a fast and cost-effective method for greenfields exploration of critical minerals at a continental to regional scale. A broad range of optical satellite sensors are now available to mineral explorers for collecting Earth observation information (EOI) at various spatial and spectral resolutions, with different capabilities for direct identification of mineral groups and/or species as well as selected chemical elements. The spectral resolution of many of the latest imaging spectroscopy satellite systems (e.g., PRISMA - https://www.asi.it/en/earth-science/prisma/; EnMap - https://www.enmap.org/; EMIT - https://earth.jpl.nasa.gov/emit/) allow the mapping of the relative mineral abundance and, in selected cases, even the chemical composition of hydrothermal alteration minerals and pegmatite indicator minerals, such as white mica, chlorite and tourmaline. More specialised hyperspectral satellite systems, such as DESIS (https://www.dlr.de/eoc/en/desktopdefault.aspx/tabid-13614/) feature a very high spectral resolution (235 bands at 2.55 nm sampling and 3.5 nm full width half maximum) across parts of the Visible to Near-Infrared (VNIR) wavelength range, opening up the possibility for direct mapping of rare earth elements, such as neodymium. The pixel size of the imaging spectroscopy satellite systems is commonly 30 m, which can be sufficient to map hydrothermal footprints of ore deposits or surface expressions of typical rare element host rocks, such as pegmatites and carbonatites. However, airborne hyperspectral surveys still provide a higher spatial resolution, which can be essential in a given mineral exploration campaign. Selected multispectral satellite systems, such as ASTER (https://terra.nasa.gov/data/aster-data) and WorldView3 (https://resources.maxar.com/data-sheets/worldview-3) do have bands at important wavelength ranges in the shortwave infrared, but not with high enough spectral resolution to clearly identify many indicator minerals for critical minerals deposits. Most publicly available satellite imagery comprises multispectral systems that are focussed on the VNIR, such as Landsat and Sentinel, but which allow the direct identification of only very few mineral groups (mainly iron oxides) and not hydroxylated vector minerals (e.g., white mica, chlorite, tourmaline). This work aims to provide a summary of currently available optical satellite sensors and high-level comparison of their applications for critical minerals exploration. In addition to the spatial and spectral resolution, the impact of, for example, signal-to-noise ratio, striping and band width on accurate mineral and element mapping is discussed. For this, case studies are presented that demonstrate the potential use of the respective sensors for different stages of an exploration campaign and also the opportunities for integration with other geoscience data across scales. This abstract was presented to the 13th IEEE GRSS Workshop on Hyperspectral Image and Signal Processing (WHISPERS) November 2023 (https://www.ieee-whispers.com/)
-
<div>The production of rare earth elements is critical for the transition to a low carbon economy. Carbonatites (>50% carbonate minerals) are one of the most significant sources of rare earth elements (REEs), both domestically within Australia, as well as globally. Given the strategic importance of critical minerals, including REEs, for the Australian national economy, a mineral potential assessment has been undertaken to evaluate the prospectivity for carbonatite-related REE (CREE) mineralisation in Australia. CREE deposits form as the result of lithospheric- to deposit-scale processes that are spatially and temporally coincident.</div><div><br></div><div>Building on previous research into the formation of carbonatites and their related REE mineralisation, a mineral system model has been developed that incorporates four components: (1) source of metals, fluids, and ligands, (2) energy sources and fluid flow drivers, (3) fluid flow pathways and lithospheric architecture, and (4) ore deposition. This study demonstrates how national-scale datasets and a mineral systems-based approach can be used to map the mineral potential for CREE mineral systems in Australia.</div><div><br></div><div>Using statistical analysis to guide the feature engineering and map weightings, a weighted index overlay method has been used to generate national-scale mineral potential maps that reduce the exploration search space for CREE mineral systems by up to ∼90%. In addition to highlighting regions with known carbonatites and CREE mineralisation, the mineral potential assessment also indicates high potential in parts of Australia that have no previously identified carbonatites or CREE deposits.</div><div><br></div><div><b>Citation: </b>Ford, A., Huston, D., Cloutier, J., Doublier, M., Schofield, A., Cheng, Y., and Beyer, E., 2023. A national-scale mineral potential assessment for carbonatite-related rare earth element mineral systems in Australia, <i>Ore Geology Reviews</i>, V. 161, 105658. https://doi.org/10.1016/j.oregeorev.2023.105658</div>