From 1 - 10 / 31
  • <div>A PowerPoint presentation given by Chief of Minerals, Energy and Groundwater Division Dr Andrew Heap at NT Resources Week 2023. </div><div><br></div><div>This presentation had the theme of 'Precompetitive geoscience - Uncovering our critical minerals potential.'</div>

  • This database contains geochemical analyses of over 7000 samples collected from or near mineral deposits from 60 countries, compiled by the Critical Minerals Mapping Initiative (CMMI), a collaboration between Geoscience Australia (GA), the Geological Survey of Canada (GSC) and the United States Geological Survey (USGS). Data was compiled from a number of publicly-available sources, including federal and provincial government mineral deposit and geochemistry databases, and the ore samples normalised to average crustal abundance (OSNACA) database compiled by the Centre for Exploration Targeting at the University of Western Australia. Geochemical data cover the majority of the periodic table, with metadata on analytical methods and detection limits. Where available, sample descriptions include lithology, mineralogy, and host stratigraphic units. Mineral deposits are classified according to the CMMI mineral deposit classification scheme (Hofstra et al., 2021). Location information includes deposit or prospect name, and sampling location (i.e., mine, field site, or borehole collar). This dataset will be updated periodically as more data become available. Geoscience Australia: D Champion, O Raymond, D Huston, M Sexton, E Bastrakov, S van der Wielen, G Butcher, S Hawkins, J Lane, K Czarnota, I Schroder, S McAlpine, A Britt Geological Survey of Canada: K Lauzière, C Lawley, M Gadd, J-L Pilote, A Haji Egeh, F Létourneau United States Geological Survey: M Granitto, A Hofstra, D Kreiner, P Emsbo, K Kelley, B Wang, G Case, G Graham Geological Survey of Queensland: V Lisitsin

  • Critical minerals are pivotal to human society in industrialised and developing economies. Many critical minerals are irreplaceable inputs for technological and industrial advancements, especially renewable energy systems, electric vehicles, rechargeable batteries, consumer electronics, telecommunications, specialty alloys, and defence technologies. Critical minerals are metals, non-metals and mineral compounds that are economically important and are also subject to high risks of supply. “Criticality” is a subjective concept; countries develop their own lists of critical minerals based on the relative importance of particular minerals to their industrial needs and strategic assessment of supply risks. Lists are reviewed and changed over time. Commonly appearing on lists of high criticality are: antimony, barite, beryllium, bismuth, cesium, chromium, cobalt, germanium, indium, lithium, manganese, niobium, platinum-group elements (PGE), potash, rare earth elements (REE), rhenium, rubidium, scandium, strontium, tantalum, tellurium, rhenium, tungsten, and vanadium. The supply of critical minerals is an area of great growth potential, based on increasing technological demands and uses at a global level. Australia is one of the world’s principal producers of several key major mineral commodities (e.g. bauxite, coal, copper, lead, gold, ilmenite, iron ore, nickel, rutile, zircon, and zinc). Although some critical minerals are mined as primary products (e.g. REE, lithium, potash), many critical minerals are extracted as companion products from base or precious metal production (e.g. PGE from nickel sulfide ores, or indium from zinc concentrate). Considering that Australia has leading expertise in mining and metallurgical processing as well as extensive mineral resources likely to contain critical minerals, there is a clear opportunity for Australia to develop into a major, transparent and reliable supplier of critical minerals for the global economy. Based on a conservative estimate, Australia could add approximately $9.4 billion of value to the nation's mineral and metal production (currently valued at $112.2 billion, or an increase of about 8%) through the production of four critical commodities (hafnium, niobium, rare earth elements and scandium) from existing mines and favourable deposits. Full realisation of this and potentially even greater production is significantly affected by other factors, including: insufficient knowledge of critical minerals in Australian deposits and their behaviour during metallurgical processing due to limited reporting by industry; few geological studies dedicated to assessing and facilitating the discovery of critical mineral resources in Australia; the need for new mining technology and services to economically extract critical minerals; gaps in capabilities of domestic smelters/refineries to process critical minerals. These issues require further research and investigation in order for Australia to maximise its position in global critical minerals markets. This study was commissioned by Geoscience Australia in collaboration with RMIT and Monash University to summarise key aspects of the current state of critical minerals in Australia. The report covers: global demand and supply; Australia’s resource potential; an overview of ‘criticality’ assessment methods; estimates of potential economic value; and future research needs for critical minerals in Australia.

  • The importance of critical minerals and the need to expand and diversify critical mineral supply chains has been endorsed by the Federal governments of Australia, Canada, and the United States. The geoscience organizations of Geoscience Australia, the Geological Survey of Canada and the U.S. Geological Survey have created the Critical Minerals Mapping Initiative to build a diversified critical minerals industry in Australia, Canada, and the United States by developing a better understanding of known critical mineral resources, determining geologic controls on critical mineral distribution for deposits currently producing byproducts, identifying new sources of supply through critical mineral potential mapping and quantitative mineral assessments, and promoting critical mineral discovery in all three countries.

  • High-purity quartz (HPQ) is the only naturally occurring and economically viable source for the production of silicon. Silicon is a critical mineral, and a key component in modern technologies such as semiconductors and photovoltaic cells. Critical minerals support the move towards a greater reliance on electrification, renewable energy sources and economic security. The global transition to net zero carbon emissions means there is a growing need for new discoveries of HPQ to supply the silicon production chain. HPQ deposits are identified in a multitude of geological settings, including pegmatites, hydrothermal veins, sedimentary accumulations and quartzite; however, deposits of sufficient volume and quality are rare. Quartz is abundant throughout Australia, but the exploration and discovery of HPQ occurrences are notably under-reported, making assessment of the HPQ potential in Australia extremely difficult. This paper presents a much-needed summary of the state of the HPQ industry, exploration and deposit styles in Australia. KEY POINTS: 1. High-purity quartz (HPQ) is a key material for the manufacture of photovoltaic cells, semiconductors and other high-technology applications. 2. HPQ can be recovered from a variety of different source rocks in a range of geological settings. 3. Currently, the HPQ industry in Australia is under-utilised for high-technology applications, and historical exploration and mining records are under-reported and opaque. 4. This review presents an outline of the characteristics, processing requirements and end uses of HPQ, and a summary of the operations, deposits, exploration targets and known occurrences of HPQ in Australia. <b>Citation:</b> Jennings, A., Senior, A., Guerin, K., Main, P., & Walsh, J. (2024). A review of high-purity quartz for silicon production in Australia. <i>Australian Journal of Earth Sciences</i>, 1–13. https://doi.org/10.1080/08120099.2024.2362296

  • <div>This guide and template details data requirements for submission of mineral deposit geochemical data to the Critical Minerals in Ores (CMiO) database, hosted by Geoscience Australia, in partnership with the United States Geological Survey and the Geological Survey of Canada. The CMiO database is designed to capture multielement geochemical data from a wide variety of critical mineral-bearing deposits around the world. Samples included within this database must be well-characterized and come from localities that have been sufficiently studied to have a reasonable constraint on their deposit type and environment of formation. As such, only samples analysed by modern geochemical methods, and with certain minimum metadata attribution, can be accepted. Data that is submitted to the CMiO database will also be published via the Geoscience Australia Portal (portal.ga.gov.au) and Critical Minerals Mapping Initiative Portal (https://portal.ga.gov.au/persona/cmmi).&nbsp;</div><div><br></div>

  • This web service delivers data from an aggregation of sources, including several Geoscience Australia databases (provinces (PROVS), mineral resources (OZMIN), energy systems (AERA, ENERGY_SYSTEMS) and water (HYDROGEOLOGY). Information is grouped based on a modified version of the Australian Bureau of Statistics (ABS) 2021 Indigenous Regions (IREG). Data covers population centres, top industries, a regional summary, groundwater resources and uses, energy production and potential across six sources and two energy storage options. Mineral production and potential covers 36 commodities that are grouped into 13 groups.

  • <div>Disruptions to the global supply chains of critical raw materials (CRM) have the potential to delay or increase the cost of the renewable energy transition. However, for some CRM, the primary drivers of these supply chain disruptions are likely to be issues related to environmental, social, and governance (ESG) rather than geological scarcity. Herein we combine public geospatial data as mappable proxies for key ESG indicators (e.g., conservation, biodiversity, freshwater, energy, waste, land use, human development, health and safety, and governance) and a global dataset of news events to train and validate three models for predicting “conflict” events (e.g., disputes, protests, violence) that can negatively impact CRM supply chains: (1) a knowledge-driven fuzzy logic model that yields an area under the curve (AUC) for the receiver operating characteristics plot of 0.72 for the entire model; (2) a naïve Bayes model that yields an AUC of 0.81 for the test set; and (3) a deep learning model comprising stacked autoencoders and a feed-forward artificial neural network that yields an AUC of 0.91 for the test set. The high AUC of the deep learning model demonstrates that public geospatial data can accurately predict natural resources conflicts, but we show that machine learning results are biased by proxies for population density and likely underestimate the potential for conflict in remote areas. Knowledge-driven methods are the least impacted by population bias and are used to calculate an ESG rating that is then applied to a global dataset of lithium occurrences as a case study. We demonstrate that giant lithium brine deposits (i.e., >10&nbsp;Mt Li2O) are restricted to regions with higher spatially situated risks relative to a subset of smaller pegmatite-hosted deposits that yield higher ESG ratings (i.e., lower risk). Our results reveal trade-offs between the sources of lithium, resource size, and spatially situated risks. We suggest that this type of geospatial ESG rating is broadly applicable to other CRM and that mapping spatially situated risks prior to mineral exploration has the potential to improve ESG outcomes and government policies that strengthen supply chains. <b>Citation:</b> Haynes M, Chudasama B, Goodenough K, Eerola T, Golev A, Zhang SE, Park J and Lèbre E (2024) Geospatial Data and Deep Learning Expose ESG Risks to Critical Raw Materials Supply: The Case of Lithium. <i>Earth Sci. Syst. Soc. </i>4:10109. doi: 10.3389/esss.2024.10109

  • <div>This record one in a series of reports detailing the geochemical and mineralogical results of sampling collected at mine waste sites across Australia as part of Geoscience Australia's Exploring for the Future program. It presents new data and information on nickel, cobalt and rare earth elements at the Eloise copper mine located in the North West Minerals Province, Queensland.&nbsp;</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div>

  • The Australian Resource Reviews are periodic national assessments of individual mineral commodities. The reviews include evaluations of short-term and long-term trends for each mineral resource, world rankings, production data, significant exploration results and an overview of mining industry developments.