Magnetic
Type of resources
Keywords
Publication year
Service types
Topics
-
Survey conducted by the Commonwealth Government or State/Territory Geological Survey (or equivalent) collecting airborne geophysical data
-
This service provides Estimates of Geological and Geophysical Surfaces (EGGS). The data comes from cover thickness models based on magnetic, airborne electromagnetic and borehole measurements of the depth of stratigraphic and chronostratigraphic surfaces and boundaries.
-
<div>In July 2022 an airborne electromagnetic (AEM) survey was flown over and around the proposed site of the National Radioactive Waste Management Facility near the township of Kimba in South Australia. The survey was commissioned by the Australian Radioactive Waste Agency, and was project managed by Geoscience Australia. The survey has Geoscience Australia airborne survey project number P5008.</div><div><br></div><div>The survey was flown by Skytem Australia Pty Ltd using its SkyTEM312Fast AEM system. The survey was conducted on east-west lines at 500 m spacing, with a smaller central focus area of 100 m spaced lines, acquiring a total of 2,545 line kilometres of data. Skytem Australia Pty Ltd also processed the data.</div><div><br></div><div>This data package includes the acquisition and processing report, the final processed AEM data and the results of the 1D laterally constrained inversion of the data to conductivity-depth estimates that was carried out by the contractor.</div>
-
During the last 10-20 years, Geological Surveys around the world have undertaken a major effort towards delivering fully harmonized and tightly quality controlled low-density multi-element soil geochemical maps and datasets of vast regions including up to whole continents. Concentrations of between 45 and 60 elements commonly have been determined in a variety of different regolith types (e.g., sediment, soil). The multi-element datasets are published as complete geochemical atlases and made available to the general public. Several other geochemical datasets covering smaller areas but generally at a higher spatial density are also available. These datasets may, however, not be found by superficial internet-based searches because the elements are not mentioned individually either in the title or in the keyword lists of the original references. This publication attempts to increase the visibility and discoverability of these fundamental background datasets covering large areas up to whole continents. <b>Citation:</b> P. de Caritat, C. Reimann, D.B. Smith, X. Wang, Chemical elements in the environment: Multi-element geochemical datasets from continental- to national-scale surveys on four continents, <i>Applied Geochemistry</i>, Volume 89, 2018, Pages 150-159, ISSN 0883-2927, https://doi.org/10.1016/j.apgeochem.2017.11.010
-
<div>As part of the Australia's Resources Framework Project, in the Exploring for the Future Program, Geoscience Australia and CSIRO have undertaken a magnetic source depth study across four areas. These are: 1) the western part of Tasmania that is the southernmost extension of the Darling-Curnamona-Delamerian (DCD) project area; 2) northeastern Queensland; 3) the Officer Basin area of western South Australia and southeastern West Australia; and 4) the 'Eastern Resources Corridor' (ERC) covering eastern South Australia, southwest Queensland, western New South Wales and western Victoria. This study has produced 2005 magnetic estimates of depth to the top of magnetization. The solutions are derived by a consistent methodology (targeted magnetic inversion modelling, or TMIM; also known as ‘sweet-spot’ modelling). </div><div><br></div><div>The magnetic depth estimates produced as part of this study provide depth constraints in data-poor areas. They help to construct a better understanding of the 3D geometry of the Australian continent, and aid cover thickness modelling activities. </div><div><br></div><div>A supplementary interpretation data release is also available through Geoscience Australia's enterprise catalogue (ecat) at https://pid.geoscience.gov.au/dataset/ga/149499.</div><div><br></div><div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. This work contributes to building a better understanding of the Australian continent, whilst giving the Australian public the tools they need to help them make informed decisions in their areas of interest.</div>
-
<div>Near-surface magnetizations are ubiquitous across many areas of Australia and complicate reliable estimation of depth to deeper magnetizations. We have selected four test areas in which we use equivalent source dipoles to represent and quantify the near-surface magnetizations. We present a synthetic modelling study that demonstrates that field variations from the near-surface magnetizations substantially degrade estimation of depth to a magnetization 500 metres below the modelled sensor elevation and that these problems persist even for anomalies with significantly higher amplitudes. However, preferential attenuation of the fields from near surface magnetizations by upward continuation proved quite effective in improving estimation of depth to those magnetizations.</div> This Abstract was submitted/presented at the 2023 Australasian Exploration Geoscience Conference (AEGC) 13-18 March (https://2023.aegc.com.au/)
-
NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-Basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1100 m of Proterozoic sedimentary rocks uncomformably overlain by 630 m of Cambrian Georgina Basin carbonates. A comprehensive geochemical program designed to provide information about the region’s resource potential was carried out on samples collected at up to 4 meter intervals. This report presents data from magnetic susceptibility analyses undertaken by Geoscience Australia on selected rock samples to establish their ability to be magnetised in an applied external magnetic field.
-
<div>Geoscience Australia (GA), in collaboration with the New South Wales (NSW) Government’s Geological Survey of NSW, undertook a horizontal magnetic gradient and radiometric survey in the Yathong area of NSW. This survey was fully funded by the NSW Government as part of a project to find deep groundwater for use in times of drought.</div><div><br></div><div>Survey Name: Yathong</div><div>Datasets Acquired: Horizontal Magnetic Gradient, Radiometrics, and Elevation</div><div>Geoscience Australia Project Number: P5023</div><div>Acquisition Start Date: 21/05/2023</div><div>Acquisition End Date: 14/09/2023</div><div>Flight line spacing: 200 m</div><div>Flight line direction: East-West (090-270 degrees)</div><div>Total distance flown: 65,503.75 line-km's</div><div>Nominal terrain clearance: 80 m</div><div>Data Acquisition: Magspec Airborne Surveys Pty Ltd</div><div>Project Management: Geoscience Australia</div><div>Quality Control: Geoscience Australia</div><div>Dataset Ownership: Geological Survey of New South Wales</div><div>Datum: Geocentric Datum of Australia 2020 (GDA2020)</div><div>Projection: Map Grid of Australia Zone 55 (MGA55)</div><div><br></div><div>Included in this release:</div><div><br></div><div>1. Point-located Data - ASCII-column (.dat) and NetCDF (.nc) format.</div><div>• Magnetic diurnal;</div><div>• Magnetic gradient raw-edited;</div><div>• Magnetic gradient reduced;</div><div>• Radiometrics raw-edited;</div><div>• Radiometrics reduced.</div><div><br></div><div>2. Gridded data - ERMapper (.ers) format.</div><div>• Gradient enhanced Total Magnetic Intensity (TMI);</div><div>• Gradient enhanced TMI Reduced to Pole (RTP);</div><div>• Gradient enhanced TMI RTP with First Vertical Derivative (1VD);</div><div>• Dose rate (with NASVD and standard processing);</div><div>• Potassium concentration (with NASVD, standard processing);</div><div>• Thorium concentration (with NASVD, standard processing);</div><div>• Uranium concentration (with NASVD, standard processing);</div><div>• Radar-derived digital elevation model (geoidal).</div><div><br></div><div>3. Reports.</div><div>• Calibration report;</div><div>• Operations and processing summary report.</div>
-
<p>Geoscience Australia (GA) generated a series of gravity and magnetic grids and enhancements covering Northern Australia. Several derivative gravity datasets have been generated 1) for the North-West Shield Western Australia region (approximately between latitudes 7‒26⁰ S and longitudes 110‒130⁰ E), 2) for the Northern Territory (approximately between latitudes 7‒26⁰ S and longitudes 125.5‒141⁰ E) and for Queensland (approximately between latitudes 7‒30⁰ S and longitudes 135‒160⁰ E). The magnetic dataset has been generated only for the North-West Shield Western Australia region (approximately between latitudes 7‒26⁰ S and longitudes 110‒130⁰ E). The magnetic and gravity data were downloaded from the Geophysical Archive Data Delivery System (GADDS), website (http://www.geoscience.gov.au/cgi-bin/mapserv?map=/nas/web/ops/prod/apps/mapserver/gadds/wms_map/gadds.map&mode=browse). Satellite Free-air (FA) gravity v27.1 (released March 11, 2019) and Satellite Topography v19.1 (released January 14, 2019) data were sourced from Sandwell et al. (2014) and downloaded from the Scripps Institution of Oceanography (SIO), National Oceanic and Atmospheric Administration (NOAA), U.S. Navy and National Geospatial-Intelligence Agency (NGA) (SIO Satellite Geodesy, website, http://topex.ucsd.edu/WWW_html/mar_grav.html). The Satellite Bouguer gravity grid with onshore correction density of 2.67 gcm-3 and offshore correction density of 2.20 gcm-3 was derived from the Free-air gravity v27.1 and Topography data V19.1. This Bouguer gravity grid was used for filling areas of data gaps in the offshore region. <p>Data evaluation and processing of gravity and magnetic data available in the area of interest resulted in the production of stitched onshore-offshore Bouguer gravity grid derived from offshore satellite Bouguer gravity grid and GA’s onshore ground and airborne gravity survey data and a stitched Total Magnetic Intensity (TMI) grid derived from airborne and shipborne surveys (Tables 1 and 5). A Reduction to the Pole (RTP) grid was derived from the stitched TMI grid. The TMI, RTP, FA and terrain corrected Bouguer gravity anomalies are standard datasets for geological analysis. The free-air gravity anomaly provides the raw and basic gravity information. Images of free-air gravity are useful for first-pass interpretation and the data is used for gravity modelling. Magnetic anomalies provide information on numerous magnetic sources, including deep sources as arising from the structure and composition of magnetic basement and shallow sources such as intra-sedimentary magnetic units (e.g. volcanics, intrusions, and magnetic sedimentary layers). A standard TMI image will contain information from all these sources. Geosoft Oasis montaj software was used throughout the data processing and enhancement procedure and the montaj GridKnit module was used to generate the stitched gravity and magnetic grids. <p>Enhancement techniques have been applied to the final processed Bouguer gravity and RTP magnetic grids to highlight subtle features from various sources and to separate anomalies from different source depths. These enhancement techniques are described in the next section. <p>Enhancement processing techniques and results <p>A summary of image processing techniques used to achieve various outcomes is described in Table 1. <p>Data type Filter applied Enhancement/outcome <p>Gravity/Magnetic First vertical derivative (1VD) Near surface features (e.g. intrabasinal) <p>Gravity/Magnetic Upward continuation Noise reduction in data <p>Gravity/Magnetic Low pass filter, or large distance upward continuation Enhancement of deep features (e.g. basement) <p>Gravity/Magnetic High pass filter Enhancement of shallow features (e.g. surface anomalies) <p>Gravity/Magnetic Tilt filter and 1VD Enhancement of structure (e.g. in basement) <p>Gravity/Magnetic ZS-Edgezone and ZS-Edge filters Enhancement of edges <p>Gravity/Magnetic horizontal modulus / horizontal gradient Enhancement of boundaries <p>Magnetic RTP (reduction to the pole), Compound Anomaly, and Analytic Signal filter Accurate location of sources
-
Survey Name: Cobar magnetic and radiometric survey, 2021 Datasets Acquired: Magnetics, Radiometrics and Elevation Geoscience Australia Project Number: P5009 Acquisition Start Date: 8/06/2021 Acquisition End Date: 10/08/2021 Flight line spacing: 200 m Flight line direction: East-West (090-270) Total distance flown: 53,617 line-km Nominal terrain clearance: 60 m Blocks: 7 Data Acquisition: Magspec Airborne Surveys Project Management: Geoscience Australia Quality Control: Baigent Geosciences P.L. on behalf of Geoscience Australia Dataset Ownership: Geological Survey of NSW and Geoscience Australia Included in this release: 1. Point-located Data ASCII-column data with accompanying description and definition files. • Magnetics corrected i. Magnetic data with corrections for diurnal, IGRF, tie-levelling, micro-levelling. ii. Elevation data converted to geoidal values and a digital elevation model. • Radiometrics corrected i. Equivalent ground concentrations of radioelements with and without NASVD spectral filtering and standard IAEA processing, pressure, temperature and survey altitude. 2. Grids Gridded data in ERMapper (.ers) format (GDA94, MGA55). • Total magnetic intensity (TMI). • TMI reduced to pole (RTP). • TMI RTP with first vertical derivative applied. • Dose rate (with NASVD and standard processing). • Potassium concentration (%, with NASVD, standard processing). • Thorium concentration (ppm, with NASVD, standard processing). • Uranium concentration (ppm, with NASVD, standard processing). • Radar-derived digital elevation model (geoidal). 3. Images Data in tagged image format (TIF), (GDA94, MGA55). • Total magnetic intensity (TMI). • TMI reduced to pole (RTP). • TMI RTP with first vertical derivative applied. • Dose rate (with NASVD and standard processing). • Potassium concentration (% with NASVD, standard processing). • Thorium concentration (ppm, with NASVD, standard processing). • Uranium concentration (ppm, with NASVD, standard processing). • Radar-derived digital elevation model (geoidal). 4. Reports • P5009_2585_V3_GA_Cobar_Logistics_Report • P5009_BGS_GA_CobarQCReport © Geological Survey of New South Wales and Commonwealth of Australia (Geoscience Australia) 2021. With the exception of the Commonwealth Coat of Arms and where otherwise noted, this product is provided under a Creative Commons Attribution 4.0 International License. (http://creativecommons.org/licenses/by/4.0/legalcode).