From 1 - 10 / 13
  • Wind multipliers are factors that transform wind speeds over open, flat terrain (regional wind speeds) to local wind speeds that consider the effects of direction, terrain (surface roughness), shielding (buildings and structures) and topography (hills and ridges). During the assessment of local wind hazards (spatial significance in the order 10's of metres), wind multipliers allow for regional wind speeds (order 10 to 100's of kilometres) to be factored to provide local wind speeds. <b>Value: </b>The wind multiplier data is used in modelling the impacts (i.e. physical damage) of wind-related events such as tropical cyclones (an input for Tropical Cyclone Risk assessment), thunderstorms and other windstorms. <b>Scope: </b>Includes terrain, shielding and topographic multipliers for national coverage. Each multiplier further contains 8 directions.

  • This dynamic dataset is composed of data layers representing the potential damage arising from the impacts of Tropical Cyclone (TC) related winds on residential houses. The impacts are determined using information on the forecast track of the TC issued by the Bureau of Meteorology, nationally consistent exposure (residential building) and vulnerability (likely level of damage) information maintained by Geoscience Australia. The tracks are based on the content of Technical Bulletins issued by the Bureau of Meteorology’s Tropical Cyclone Warning Centres every 6 hours for active TCs in the Australian region. As such, information is generated intermittently, depending on the occurrence of TCs. The tracks are a forecast only, so do not include past position information of the TC. Forecasts may extend up to 120 hours (5 days) ahead of the forecast time. A wind field around each track is simulated using Geoscience Australia’s Tropical Cyclone Risk Model (TCRM, https://pid.geoscience.gov.au/dataset/ga/77484). This provides an estimate of the maximum gust wind speed over open, flat terrain (e.g. airports). Local effects such as topography and land cover changes are incorporated via site wind multipliers (https://pid.geoscience.gov.au/dataset/ga/75299), resulting in a 0.2-second, 10-m above ground level wind speed, with a spatial resolution of approximately 30 metres. The impacts are calculated using Geoscience Australia’s HazImp code (https://pid.geoscience.gov.au/dataset/ga/110501), which utilises the National Exposure Information System building data and a suite of wind vulnerability curves to determine the level of damage sustained by individual buildings (a damage index). The damage index values are aggregated to Australian Bureau of Statistics Statistical Area Level 1 regions, and can be assigned a qualitative damage description based on the mean damage index.

  • This report presents the results of research conducted by Geoscience Australia (GA) in Bundaberg following the January 2013 floods. The report covers responses from both householders who were either inundated by the flood waters or who were fortunate to have escaped inundation. Irrespective of the inundation status, Bundaberg’s householders were still impacted by the flood event. Some may not have been able to access their place of work; some may have experienced physical and mental health issues. The report also discusses the impact of the flood on Bundaberg’s business community.

  • A presentation delivered at the Australia Reinsurance Pool Corporation / Organisation for Economic Co-operation and Development (ARPC/OECD) Terrorism Risk Insurance Conference held in Canberra from 6-7 October 2016. The presentation focusses on GA's work with the ARPC in developing a capability to estimate insured losses due to blast in Australian cities.

  • The National Hazard Impact Risk Service for Tropical Cyclone Event Impact provides information on the potential impact to residential separate houses due to severe winds. The information is derived from Bureau of Meteorology tropical cyclone forecast tracks, in combination with building location and attributes from the National Exposure Information System and vulnerability models to define the level of impact. Impact data is aggregated to Statistical Area Level 1, categorised into five qualitative levels of impact.

  • <div>To set out how Geoscience Australia is meeting its vision for the Exploring for the Future program, we have summarised the ways our scientific activities, outputs and intended outcomes and impacts are linked, using the Impact Pathway diagram. This updated brochure includes program impact infographics.</div>

  • Australian Community Climate and Earth-System (ACCESS) Numerical Weather Prediction (NWP) data is made available by the Bureau of Meteorology for registered subscribers such as GA. ACCESS-C3 (City) model is a forecast-only model performed every 6 hours and consists of grid coordinates covering domains around Sydney, Victoria and Tasmania, Brisbane, Perth, Adelaide and Darwin. ACCESS Impact Modelling (ACCESS-IM) System utilise information from ACCESS-NWP on the forecast wind gust speeds ground surface (single-level) at 10 metres, simulated by the ACCESS-C3 model, for the time period of 0-12, 12-24, 24-36, 0-36.

  • People, homes, businesses and infrastructure have been severely impacted by the recent flooding in Tweed Shire. Information is needed on the nature of these impacts to assess losses, assess community recovery and contribute to the development of strategies to reduce risk in the future. To collect this information a survey team has been established to gather data on the impact on buildings and businesses. The survey team is being led by Geoscience Australia, the national agency for geoscience research and spatial information, in collaboration with RMIT University and the Tweed Shire Council.

  • The Tropical Cyclone Scenario Selection tool enables users (e.g. emergency managers, engineers, researchers, etc.) to query the catalogue of tropical cyclone scenarios, developed as part of the 2018 Tropical Cyclone Hazard Assessment (TCHA18). The TCHA18 catalogue is comprised of 10,000 simulated years of tropical cyclone activity in the Australian region, amounting to over 160,000 tropical cyclone events. Using the search tools, the tracks and wind fields of individual events affecting a location or region can be discovered and explored. The returned scenarios are retrieved from a catalogue of synthetic tropical cyclones and can queried within the map and/or downloaded in various formats for follow-on analysis.

  • Australian Community Climate and Earth-System (ACCESS) Numerical Weather Prediction (NWP) data is made available by the Bureau of Meteorology for registered subscribers such as GA. ACCESS-C3 (City) model is a forecast-only model performed every 6 hours and consists of grid coordinates covering domains around Sydney, Victoria and Tasmania, Brisbane, Perth, Adelaide and Darwin. ACCESS Impact Modelling (ACCESS-IM) System utilise information from ACCESS-NWP on the forecast wind gust speeds ground surface (single-level) at 10 metres, simulated by the ACCESS-C3 model, for the time period of 0-12, 12-24, 24-36, 0-36.