Basin Analysis
Type of resources
Keywords
Publication year
Scale
Topics
-
The Petrel Sub-basin CO2 Storage Study data package includes the datasets used for the study located in the Petrel Sub-basin, Bonaparte Basin, offshore Northern Territory. The datasets supports the results of the Geoscience Australia Record 2014/11 and appendices. The study provides an evaluation of the CO2 geological storage potential of the Petrel Sub-basin and was part of the Australian government's National Low Emission Coal Initiative.
-
The Great Artesian Basin Water Resource Assessment involves a basin-scale investigation of water resources to fill knowledge gaps about the status of water resources in the basin and the potential impacts of climate change and resource development. This report addresses findings in the Carpentaria region. Citation: Smerdon BD, Welsh WD and Ransley TR (eds) (2012) Water resource assessment for the Carpentaria region. A report to the Australian Government from the CSIRO Great Artesian Basin Water Resource Assessment. CSIRO Water for a Healthy Country Flagship, Australia.
-
This report was compiled and written to summarise the four-year Palaeovalley Groundwater Project which was led by Geoscience Australia from 2008 to 2012. This project was funded by the National Water Commission's Raising National Water Standards Program, and was supported through collaboration with jurisdictional governments in Western Australia, South Australia and the Northern Territory. The summary report was published under the National Water Commission's 'Waterlines' series. This document is supported by related publications such as the palaeovalley groundwater literature review, the WASANT Palaeovalley Map and associated datasets, and four stand-alone GA Records that outline the detailed work undertaken at several palaeovalley demonstration sites in WA, SA and the NT. Palaeovalley aquifers are relied upon in outback Australia by many groundwater users and help underpin the economic, social and environmental fabric of this vast region. ‘Water for Australia’s arid zone – Identifying and assessing Australia’s palaeovalley groundwater resources’ (the Palaeovalley Groundwater Project) investigated palaeovalleys across arid and semi-arid parts of Western Australia (WA), South Australia (SA) and the Northern Territory (NT). The project aimed to (a) generate new information about palaeovalley aquifers, (b) improve our understanding of palaeovalley groundwater resources, and (c) evaluate methods available to identify and assess these systems.
-
This GIS package contains interpreted boundaries and thalwegs (valley bottoms) of Cenozoic palaeovalley systems derived from the Frome AEM Survey dataset. Palaeovalley boundaries are by Adrian Fabris, DMITRE, and include interpreted Eyre Formation sediments only. Palaeovalley thalwegs are by Ian Roach, GA, and include interpreted Eyre Formation and Namba Formation sediments. This dataset supports the Frome AEM Survey interpretation record, GA Record 2012/40-Geological Survey of South Australia Report Book 2012/00003.
-
The ‘Australia’s Future Energy Resources’ (AFER) project is a four-year multidisciplinary investigation of the potential energy commodity resources in selected onshore sedimentary basins. The resource assessment component of the project incorporates a series of stacked sedimentary basins in the greater Pedirka-western Eromanga region in eastern central Australia. Using newly reprocessed seismic data and applying spatially enabled, exploration play-based mapping tools, a suite of energy commodity resources have been assessed for their relative prospectivity. One important aspects of this study has been the expansion of the hydrocarbon resource assessment work flow to include the evaluation of geological storage of carbon dioxide (GSC) opportunities. This form of resource assessment is likely to be applied as a template for future exploration and resource development, since the storage of greenhouse gases has become paramount in achieving the net-zero emissions target. It is anticipated that the AFER project will be able to highlight future exploration opportunities that match the requirement to place the Australian economy firmly on the path of decarbonisation.
-
The Onshore Basin Inventory is a summary of data and geological knowledge of hydrocarbon-prone onshore basins of Australia. Volume 1 of the inventory covers the McArthur, South Nicholson, Georgina, Wiso, Amadeus, Warburton, Cooper and Galilee basins. Under the Exploring for the Future (EFTF) program, Geoscience Australia expanded this work to compile the Onshore Basin Inventory volume 2, which covers the Officer, onshore Canning and Perth basins. These reports provide a whole-of-basin inventory of geology, petroleum systems, exploration status and data coverage. Each report also summarises aspects that require further work. The Onshore Basin Inventory has provided scientific and strategic direction for pre-competitive data acquisition under the EFTF energy work program. Here we provide an overview of the Onshore Basin Inventory, with emphasis on its utility in shaping the EFTF energy systems data acquisition and analysis program. <b>Citation:</b> Carr, L.K., Bailey, A.H.E., Palu, T.J. and Henson, P., 2020. Onshore Basin Inventory: building on Geoscience Australia’s pre-competitive work program with Exploring for the Future In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
The South Nicholson Basin and immediate surrounding region are situated between the Paleo- to Mesoproterozoic Mount Isa Province and McArthur Basin. Both the Mount Isa Province and the McArthur Basin are well studied; both regions host major base metal mineral deposits, and contain units prospective for hydrocarbons. In contrast, the South Nicholson Basin contains rocks that are mostly undercover, for which the basin evolution and resource potential are not well understood. To address this knowledge gap, the L210 South Nicholson Seismic Survey was acquired in 2017 in the region between the southern McArthur Basin and the western Mount Isa Province, crossing the South Nicholson Basin and Murphy Province. The primary aim of the survey was to investigate areas with low measured gravity responses (‘gravity lows’) in the region to determine whether they represent thick basin sequences, as is the case for the nearby Beetaloo Sub-basin. Key outcomes of the seismic acquisition and interpretation include (1) expanded extent of the South Nicholson Basin; (2) identification of the Carrara Sub-basin, a new basin element that coincides with a gravity low; (3) linkage between prospective stratigraphy of the Isa Superbasin (Lawn Hill Formation and Riversleigh Siltstone) and the Carrara Sub-basin; and (4) extension of the interpreted extent of the Mount Isa Province into the Northern Territory. <b>Citation:</b> Carr, L.K., Southby, C., Henson, P., Anderson, J.R., Costelloe, R., Jarrett, A.J.M., Carson, C.J., MacFarlane, S.K., Gorton, J., Hutton, L., Troup, A., Williams, B., Khider, K., Bailey, A.H.E. and Fomin, T., 2020. South Nicholson Basin seismic interpretation. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
This Daly Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Daly Basin is a geological formation consisting of Cambrian to Ordovician carbonate and siliciclastic rocks, formed approximately 541 million to 470 million years ago. The basin stretches about 170 km in length and 30 km in width, shaped as a northwest elongated synform with gentle dips of less than 1 degree, likely due to prolonged sedimentary deposition in the shallow seas of the Centralian Superbasin, possibly along basin-scale faults. The primary groundwater reservoir within the Daly Basin is found in the Cambrian Daly River Group. This group comprises three units: the Tindall Limestone, Jinduckin Formation, and Oolloo Dolostone. The Tindall Limestone, which lies at the base, consists of grey, mottled limestone with some maroon-green siltstone or dark grey mudstone. The transition from the Tindall Limestone to the overlying Jinduckin Formation is marked by a shift from limestone to more siliciclastic rocks, indicating a change from open-shelf marine to peri-tidal environments. The Jinduckin Formation, situated above the Tindall Limestone, is composed of maroon-green dolomitic-siliciclastic siltstone with interbeds of dolomitic sandstone-siltstone, as well as dolostone and dolomitic quartz sandstone lenses. It gradually transitions into the carbonate-rich Oolloo Dolostone, with the highest finely laminated dolomitic sandstone-siltstone interbeds at the top of the Jinduckin Formation. The Oolloo Dolostone, the uppermost unit of the Daly River Group, comprises two members: the well-bedded lower Briggs Member, consisting of fine- to medium-grained crystalline dolostone and dolomitic quartz sandstone, and the massive upper King Member. Overlying the Daly River Group is the Ordovician Florina Formation, consisting of three carbonate intervals separated by two fine-grained, glauconite-bearing quartz sandstone units. The Florina Formation and the Daly River Group are covered unconformably by Cretaceous claystone and sandstone of the Carpentaria Basin, which extends over a significant portion of the Daly Basin.
-
<p>A regional mapping program conducted by Geoscience Australia addressed stratigraphic and structural aspects of exploration risk within the Triassic succession of the Roebuck Basin and parts of the adjacent sub-basins (central North West Shelf, Figure 1). <p>Seismic horizons of regional significance were mapped using 2D and 3D seismic surveys. Seismic survey coverage is shown in Figure 1. 2D surveys include regional deep surveys such as AGSO s110, AGSO s120, and PGS New Dawn. 3D surveys include Admiral, Beagle, CNOOC, Curt, Lord, Naranco, Polly, Whitetail, and a 5 x 5 km extract (used with permission) from the TGS Capreolus MC3D. Synthetic seismograms (Nguyen et al., 2019) were used to tie seismic horizons to wells. <p>The mapped horizons are placed within a regional tectonostratigraphic framework by Abbott et al. (2019, their Figure 2). This data pack comprises seismic horizon grids and isochron grids generated from the TR10.0_SB (base Triassic), TR17.0_SB (Mid–Triassic), and J10.0_SB (top Triassic) seismic horizons (Figure 2). Fault maps compiled at the TR10.0 _SB and J10.0_SB are also included.
-
Geoscience Australia has undertaken a regional seismic mapping study that extends into the frontier deep-water region of the offshore Otway Basin. This work builds on seismic mapping and petroleum systems modelling published in the 2021 Otway Basin Regional Study. Seismic interpretation spans over 18 000 line-km of new and reprocessed data collected in the 2020 Otway Basin seismic program and over 40 000 line-km of legacy 2D seismic data. Fault mapping has resulted in refinement and reinterpretation of regional structural elements, particularly in the deep-water areas. Structure surfaces and isochron maps highlight Shipwreck (Turonian–Santonian) and Sherbrook (Campanian–Maastrichtian) supersequence depocentres across the deep-water part of the basin. These observations will inform the characterisation of petroleum systems within the Upper Cretaceous succession, especially in the underexplored deep-water region. Presented at the 2022 Australian Petroleum Production & Exploration Association (APPEA)