AusArray
Type of resources
Keywords
Publication year
Topics
-
This is a collection of continuous seismic records gathered by temporal and semi-permanent seismic deployments where real-time data transmission was not available. Time spans vary from half an hour to more than a year depending on the purpose of the survey. Description of the employed instrumentation and array constellations can be found in the accompanied material. <b>Value: </b>Passive seismic data contains records of soil vibration due to the natural earth movements, ocean, weather, and anthropogenic activities. This data is used in ongoing research to infer national lithospheric structure from depth of a few meters to a hundred kilometres. Derived models are an important source of information for assessment of resource potential and natural hazard. <b>Scope: </b>Over time, surveys have been focused on areas of economic interest, current work of the Australian Passive Seismic Array Project (AusArray) is seeking to create a grid pattern, spaced ~55 km apart, and complemented by semi-permanent higher sensitivity broadband seismic stations. For more information about AusArray click on the following URL: <a href="https://www.ga.gov.au/eftf/minerals/nawa/ausarray">https://www.ga.gov.au/eftf/minerals/nawa/ausarray</a> <b>Data from phase 1 are available on request from clientservices@ga.gov.au - Quote eCat# 135284</b>
-
The Australian Passive Seismic Array Project (AusArray) program was developed from a long history of passive seismic imaging in Australia involving many contributors. Building on this history, the Australian Government and academia have united around AusArray. The objective is a standardised and quality controlled national passive seismic data coverage and an updatable national seismic velocity model framework that can be used as a background for higher-resolution studies. This document details the field activities and equipment preparation for temporary passive seismic station deployment, service and retrieval. Equipment cleaning and testing and database details are also described. The standard operating procedures applied during these activities were established during the deployment of two temporary passive seismograph arrays under the Australian Government’s Exploring for the Future (EFTF) program. These arrays consisted of 120–130 stations deployed in the Northern Territory and Queensland for over a year in a grid pattern with a lateral spacing of half a degree (~55 km). The temporary passive seismograph stations comprised Nanometrics Trillium Compact 120S broadband seismic sensors connected to a Güralp minimus digitiser. Batteries charged by a solar panel powered both instruments. Each station in the array was serviced, i.e. repairs if required and interim data was retrieved, at least once during the deployment.
-
Geoscience Australia’s Exploring for the Future program (EFTF) provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. The Australian Passive Seismic Array Project (AusArray) program developed from a long history of passive seismic imaging in Australia involving many contributors. Building on this history, the Australian Government (EFTF), academia and state governments have united around AusArray. The objective is a standardised and quality controlled national passive seismic data coverage and an updatable national seismic velocity model framework that can be used as a background for higher-resolution studies. The AusArray passive seismic data are supplemented with active seismic data that can provide P-wave and S-wave velocity information for the near surface down to about 50 m depth. This near-surface velocity data will provide constraints for some AusArray passive seismic data modelling to obtain more reliable depth models. This document details the active seismic data acquisition using TROMINO® three-axis broadband seismometers using a wireless trigger and hammer source. Equipment packing, field operations, data extraction and preparation, and Multichannel Analysis of Surface Waves (MASW) modelling are described.
-
<div>The active seismic and passive seismic database contains metadata about Australian land seismic surveys acquired by Geoscience Australia and its collaborative partners. </div><div>For active seismic this is onshore surveys with metadata including survey header data, line location and positional information, and the energy source type and parameters used to acquire the seismic line data. For passive seismic this metadata includes information about station name and location, start and end dates, operators and instruments. Each also contains a field that contains links to the published data. </div><div><br></div><div>The active and passive seismic database is a subset of tables within the larger Geophysical Surveys and Datasets Database and development of these databases was completed as part of the second phase of the Exploring for the Future (EFTF) program (2020-2024). The resource is accessible via the Geoscience Australia Portal (https://portal.ga.gov.au/), under 'Geophysics'. Use 'active seismic' or 'passive seismic' as search terms. </div><div><br></div>
-
<div>Finding new mineral deposits hidden beneath the sedimentary cover of Australia has become a national priority, given the country’s economic dependence on natural resources and urgent demand for critical minerals for a sustainable future. A fundamental first step in finding new deposits is to characterise the depth of sedimentary cover. Excellent constraints on the sedimentary thickness can be obtained from borehole drilling or active seismic surveys. However, these approaches are expensive and impractical in the remote regions of Australia. With over three quarters of the continent being covered in sedimentary and unconsolidated material, this poses a significant challenge to exploration.</div><div><br></div><div>Recently, a method for estimating the sedimentary thickness using passive seismic data, the collection of which is relatively simple and low-cost, was developed and applied to seismic stations in South Australia. The method uses receiver functions, specifically the delay time of the P-to-S converted phase generated at the interface of the sedimentary basement, relative to the direct-P arrival, to generate a first order estimate of the thickness of sedimentary cover. In this work we apply the same method to the vast array of seismic stations across Australia, using data from broadband stations in both permanent and temporary networks. We also investigate using the two-way traveltime of shear waves, obtained from the autocorrelation of radial receiver functions, as a related yet separate estimate of sedimentary thickness. </div><div><br></div><div>From the new receiver function delay time and autocorrelation results we are able to identify many features, such as the relatively young Cenozoic Eucla and Murray Basins. Older Proterozoic regions show little signal, likely due to the strong compaction of sediments. A comparison with measurements of sedimentary thickness from local boreholes gives a straightforward predictive relationship between the delay time and the cover thickness, offering a simple and cheap way to characterise the sedimentary thickness in unexplored areas from passive seismic data. This study and some of the data used are funded and supported by the Australian Government's Exploring for the Future program led by Geoscience Australia. Abstract to be submitted to/presented at the American Geophysical Union (AGU) Fall Meeting 2023 (AGU23) - https://www.agu.org/fall-meeting
-
To improve exploration success undercover, the UNCOVER initiative identified high-resolution 3D seismic velocity characterisation of the Australian plate as a high priority. To achieve this goal, the Australian Government and academia have united around the Australian Passive Seismic Array Project (AusArray). The aim is to obtain a national half-degree data coverage and an updatable 3D national velocity model, which grows in resolution as more data become available. AusArray combines data collected from the Australian National Seismological Network (ANSN), multiple academic transportable arrays (supported by AuScope and individual grants) and the Seismometers in Schools program. The Exploring for the Future program has enable the unification of these datasets and a doubling of the national rate of data acquisition. Extensive quality control checks have been applied across the AusArray dataset to improve the robustness of subsequent tomographic inversion and interpretation. These data and inversion code framework allow robust national-scale imaging of the Earth to be rapidly undertaken at depths of a few metres to hundreds of kilometres. <b>Citation:</b> Gorbatov, A., Czarnota, K., Hejrani, B., Haynes, M., Hassan, R., Medlin, A., Zhao, J., Zhang, F., Salmon, M., Tkalčić, H., Yuan, H., Dentith, M., Rawlinson, N., Reading, A.M., Kennett, B.L.N., Bugden, C. and Costelloe, M., 2020. AusArray: quality passive seismic data to underpin updatable national velocity models of the lithosphere. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4. http://dx.doi.org/10.11636/135284 <b>Data for this product are available on request from clientservices@ga.gov.au (see data description). Last updated 08/08/2024 - Quote eCat# 135284</b>
-
In recent years there has been a considerable expansion of deployments of portable seismic stations across Australia, which have been analysed by receiver function or autocorrelation methods to extract estimates of Moho depth. An ongoing program of full-crustal reflection profiles has now provided more than 25,000 km of reflection transects that have been interpreted for Moho structure. The Moho dataset is further augmented by extensive marine reflection results. These new data sources have been combined with earlier refraction and receiver function results to provide full continental coverage, though some desert areas remain with limited sampling. The dense sampling of the Moho indicates the presence of rapid changes in Moho depth and so the Moho surface has been constructed using an approach that allows different weighting and spatial influence depending on the nature of the estimate. The inclusion of Moho results from gravity inversion with low weighting helps to resolve the continent-ocean transition and to provide additional control in the least sampled zones. The refined distribution indicates the presence of widespread smaller-scale variations in Moho structure. Strong lateral contrasts in crustal thickness remain, but some have become more subdued with improved sampling of critical areas. The main differences from earlier results lie in previously poorly sampled regions around the Lake Eyre Basin, where additional passive seismic results indicate somewhat thicker crust though still witha strong contrast in crustal thickness to the cratonic zone to the west. Appeared in Geophysical Journal International, January 2023
-
<div>Recent studies have demonstrated that understanding the lithospheric structure is crucial for resource exploration, as errors in model interpretation can lead to significant financial losses. Tomographic images play a key role in constructing lithospheric models. Previous seismic tomographic models were developed using sparse broad-band receiver coverage in Australia, limiting the resolution and reliability of these models. Additionally, the source datasets and associated error estimates are often unavailable, making it difficult to assess the accuracy and resolution power of the models. Therefore, there is a growing need for a fully verifiable lithospheric model of Australia that utilizes national-scale legacy data assimilation and the deployment of new seismic stations to ensure standardized and quality-controlled national data coverage. Geoscience Australia has committed to producing such a model using data from improved national station coverage and sharing all results and datasets involved in model building. A relatively uniform station coverage over the Australian landmass has been achieved with the addition of the currently operated 2-degree (~222 km) grid continental-scale Australian Passive Seismic Array Project (AusArray) deployment, which includes stations installed in previously inaccessible regions. Full waveform inversion (FWI) was selected to create the Australian tomographic models. </div><div><br></div><div>Our database combines records obtained across Australia and the surrounding region. It spans from 1997 to 2023. The dataset underwent a thorough quality check and records for 358 earthquakes registered at 660 seismic stations were extracted for further FWI imaging. Our tomographic image reveals well known subduction zones visible as high velocity belts around Australia showing the structure of ~100 km thickness. The Australian lithosphere in the west is of higher seismic velocity than the east, in general, in agreement with the most tomographic models published previously. However, our results exhibit significantly higher granularity than the previous studies. Adding further earthquakes with lower magnitudes and further AusArray data as it becomes available will continue to improve the model accuracy and resolution. Presented at the 2024 Australian Society of Exploration Geophysicists (ASEG) Discover Symposium
-
<div><strong>Output Type:</strong> Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract: </strong>Knowledge of lithospheric structure is crucial information for resources exploration and deepening understanding of natural hazards. Available tomographic models of the Australian lithosphere often agree on large scale features, but in detail significant differences remain. Consequently, there is a growing need for a fully verifiable lithospheric model of Australia. Geoscience Australia has committed to develop such a model and share all results and datasets involved in model building. Here we present the first results of a full waveform inversion tomography model of Australia lithosphere down to a period of 70 s potentially able to resolve half wavelengths across continental Australia. Our model is based on seismic records from the National Seismic Network and legacy datasets with the addition of data from the currently deployed continental-scale 2° AusArray survey, which includes stations installed in previously inaccessible areas. We start with 193 earthquakes (moment magnitude (Mw) 6.2–7.5) and add 165 more earthquakes (Mw >5.0) once the model progressed to a period of 70 s. Model resolution will improve over time as more data become available and more time is allowed for computation and quality control. As further iterations continue, and the inversion frequency range expands to higher frequencies, body waves can be exploited in full to constrain the model in detail and provide enough information for all components of the wavefield, building high-resolution tomographic models at a period of 40 s and below. Our model reveals previously observed first order features while revealing finer detail across much of continental Australia.</div><div><br></div><div><strong>Citation: </strong>Holzschuh, J., Gorbatov, A., Hejrani, B., Boehm, C. & Hassan, R., 2024. Tomographic model of the Australian region from seismic full waveform inversion. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://doi.org/10.26186/149404</div>
-
<div><strong>Output type: </strong>Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract: </strong>Seismic tomography has been used for more than 50 years to map the seismic velocity structure of Earth’s interior. Here, we use data from the Exploring for the Future program, AusArray 2o deployment, to perform ambient noise tomography of the Australian continent. In this approach, stacks of cross-correlations of background seismic noise recorded by pairs of seismometers are employed to extract an approximation to the surface wave trains travelling between the seismometers. We have developed a semi-automatic approach to estimate dispersion properties of surface waves as a function of frequency at 0.01 – 1 Hz and deployed the largest ever network of broadband seismometers across the country to image the continental crust of Australia. In this study, we present an ambient noise tomography map of the Australian continent at 0.4 Hz (2.5 seconds), which is sensitive to the top 3 km of the Earth’s crust. Our model shows improved resolution across the country, for example, we observed a large low-velocity anomaly (~2.5 km/s) which delineates the shape of the entire Caning basin in Western Australia. This basin has never been imaged at this detail before, as previous tomographic studies do not measure surface wave velocity up to 0.4 Hz and do not have stations deployed in this area. The outcome demonstrates the utility of the ambient noise tomography method of imaging first-order features, that could be built upon for resource potential assessments.</div><div><br></div><div><strong>Citation: </strong>Hejrani B., Hassan R., Gorbatov A. & Zhao J., 2024. Towards continental-scale ambient noise tomography of Australia: a preliminary result from AusArray data. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://doi.org/10.26186/149637</div>