From 1 - 10 / 86
  • The Vulcan Sub-basin has been actively explored for over twenty years, with oil production from the Jabiru and Challis-Cassini fields, and the depleted Skua Field, all of which were sourced by the Upper Jurassic Lower Vulcan Formation within the Swan Graben. The need to discover other oil-prone petroleum systems led to this study focussing on oils that have a different composition to those of the aforementioned oils. Geochemical analyses (bulk and compound-specific isotopes, GC and GC-MS of saturated and aromatic hydrocarbons) have characterised the Vulcan Sub-basin oils and condensates into three families (Fig 1); a marine oil family (with some terrigenous influence) comprising Jabiru, Challis, Skua, Talbot and Tenacious; a terrestrially-influenced oil family comprising Maret, Montara, Padthaway and Bilyara which have more varied geochemistry; and, a family of condensates from Tahbilk, Swan and Eclipse. The composition of these condensates is more reflective of reservoir alteration effects (such as leakage and gas flushing) than the type of organic matter in their source rocks. The terrestrially-influenced oil family is located in the southernmost part of the Vulcan Sub-basin and in the northern Browse Basin, most probably having being source from the Lower-Middle Jurassic Plover Formation. The Plover Formation contains liquid-prone source rocks within the Skua Trough, albeit immature for hydrocarbon generation. Similar source rocks are believed to occur beneath the Swan and Paqualin grabens since oils with mixed composition are found at Puffin, Pituri and Oliver.

  • This article focuses on the re-evaluation of the source rock potential of the basal Kockatea Shale in the offshore portion of the northern Perth Basin.

  • APPEA 2000 joint paper to arrive at a better understanding of the petroleum systems active in the Northern Bonaparte Basin, geochemical data from oils and source rock-extracts were compiled and interpreted from over 20 wells in the area.

  • This study undertook geochemical and isotopic analyses on a wide selection of oil stains from the Thorntonia Limestone, Arthur Creek Formation and the Arrinthrunga Formation and its lower Hagen Member in order to define geochemical inter-relationships between the oils, characterize their source facies and to determine the extent of post-emplacement alteration. Oil stains were collected from BHD-4 and -9, Elkedra-2 and -7A, Hacking-1, MacIntyre-1, M13 PD, NTGS99/1, Owen-2, Randall-1 and Ross-1 over a depth range from 91 to 1065 m and were analysed for bulk, molecular (biomarkers) and carbon isotopic compositions. Gas chromatograph of the saturated hydrocarbon fraction clearly showed biodegradation as the main alteration process in the shallow reservoirs. Unaltered oil stains show a dominance of medium weight n-alkanes with a maximum at n-C15. Biodegradation results in a progressive loss of the lighter hydrocarbons and an accompanying shift in n-alkane maximum to C27, to finally a complete loss of n-alkanes and a large unresolved complex mixture (UCM). The absence of 25-norhopanes suggests a mild level of biodegradation. The low ratio of saturated hydrocarbons/aromatic hydrocarbons (<1, down to 0.42) compared to high ratios (up to 4.35) for oils with abundant lower molecular weight n-alkanes is consistent with biodegradation. However, low ratios are also seen for otherwise pristine oils, suggesting a complex charge history of initial biodegraded and subsequent re-charge with n-alkane-laden oil. The level of biodegradation is not too severe as to overtly affect the distribution of the biomarkers C19 - C26 tricyclic terpanes, C24 tetracyclic terpane, C27 - C35 hopanes, C30 triterpane (gammacerane) and C27- C29 desmethylsteranes, enabling their use in oil-oil correlation and definition of oil populations. To clarify the inter-relationships among the Georgina Basin oil stains multivariate statistical analysis was used involving a wide range of biomarker ratios that are source-specific and environmental indicators. Resulting oil populations showed a strong correlation with their reservoir unit across the basin, suggesting juxtaposition of source and reservoir within the same stratigraphic unit. Oil-source correlation based on biomarker, bulk carbon isotopes of saturated and aromatic hydrocarbons and n-alkane-specific carbon isotopes identified Thorntonia(!), Arthur Creek(!) and Hagen(.) Petroleum Systems. The latter petroleum system is characterised by relatively high gammacerane, indicating an evaporitic depositional environment. Alternatively, an evaporatic organic facies from an Arthur Creek Formation source may have sourced the Hagen Member oil stains, considering that other oil stains reservoired within the Arrinthrunga Formation show a close affinity with oil stains from the Arthur Creek(!) Petroleum System, suggesting an inter-formational Arthur Creek-Hagen Petroleum System at Elkedra-2. An Arthur Creek-Hagen(!) petroleum system is evident at Elkedra-7A while there is a mixed Thorntonia Limestone and Arthur Creek source contribute to the oil stain at Ross-1.

  • This is a collection of conference program and abstracts presented at AOGC 2010, Canberra.

  • The molecular composition of fluid inclusion (FI) oils from Leander Reef-1, Houtman 1 and Gage Roads-2 provide evidence of the origin of palaeo-oil accumulations in the offshore Perth Basin. These data are complemented by compound specific isotope (CSI) profiles of n-alkanes for the Leander Reef-1 and Houtman-1 samples, which were acquired on purified n-alkane fractions gained by micro-fractionation of lean FI oil samples, showing the technical feasibility of this technique. The Leander Reef-1 FI oil from the top Carynginia Formation shares many biomarker similarities with oils from the Dongara and Yardarino oilfields, which have been correlated with the Early Triassic Kockatea Shale. However, the heavier isotopic values for the C15-C25 n-alkanes in the Leander Reef-1 FI oil indicate that it is a mixture, and suggest that the main part of this oil (~90%) was sourced from the more terrestrial and isotopically heavier Early Permian Carynginia Formation or Irwin River Coal Measures. This insight would have been precluded when looking at molecular evidence alone. The Houtman-1 FI oil from the top Cattamarra Coal Measures (Middle Jurassic) was sourced from a clay-rich, low sulphur source rock with a significant input of terrestrial organic matter, deposited under oxic to suboxic conditions. Biomarkers suggest sourcing from a more prokaryotic-dominated facies than for the other FI oils, possibly a saline lagoon. The Houtman-1 FI oil ?13C CSI data are similar to data acquired on the Walyering-2 oil. Possible lacustrine sources include the Early Jurassic Eneabba Formation or the Late Jurassic Yarragadee Formation. The low maturity Gage Roads-2 FI oil from the Carnac Formation (Early Cretaceous) was derived from a strongly terrestrial, non-marine source rock containing a high proportion of Araucariacean-type conifer organic matter. It has some geochemical differences to the presently reservoired oil in Gage Roads-1, and was probably sourced from the Early Cretaceous Parmelia Formation.

  • A prospectivity assessment of the offshore northern Perth Basin, Western Australia, was undertaken as part of the Australian Goverment's Offshore Energy Security Program.

  • A laboratory study has been conducted to determine the best methods for the detection of C10 to C40 hydrocarbons at naturally occurring oil seeps in marine sediments. The results indicate that a commercially available method using hexane to extract sediments and gas chromatography to screen the resulting extract is effective at recognizing the presence of migrated hydrocarbons at concentrations between 50 to 5,000 ppm. When the oil charge is unbiodegraded the level of charge is effectively tracked by the sum of n-alkanes in the gas chromatogram. However, once the charge oil becomes biodegraded, with the loss of n-alkanes and isoprenoids, the level of charge is tracked by the quantification of the Unresolved Complex Mixture (UCM). The use of GC-MS was also found to be very effective for the recognition of petroleum related hydrocarbons and results indicate that GC-MS would be a very effective tool for screening samples at concentrations below 50 ppm oil charge.

  • Abundant, micron-scale, spherical aggregates of 2?5 nm diameter sphalerite (ZnS) particles formed within natural biofilms dominated by relatively aerotolerant sulfate-reducing bacteria of the family Desulfobacteriaceae. The biofilm zinc concentration is about 106 times that of associated groundwater (0.09 ? 1.1 ppm Zn). Sphalerite also concentrates arsenic (0.01 wt %) and selenium (0.004 wt %). The almost monomineralic product results from buffering of sulfide concentrations at low values by sphalerite precipitation. These results show how microbes control metal concentrations in groundwater and wetland-based remediation systems and suggest biological routes for formation of some low temperature ZnS deposits.