From 1 - 10 / 67
  • This Record describes the scope of the Great Artesian Basin (GAB) Automatic Data Processing System and outlines Stage 1(Data Transcription), and describes Stage 2, the checking of coded data. The subject of this record is the permanent storage, updating, and retrieval for processing of the data passed through Stages 1 and 2. The system described was developed for application to drill stem test (DST; Formation Test) data by G.E. Seidel (BMR) and then extended to suit the general GAB data by G. Krebs (BRGM).

  • Geoscience Australia (GA) produces geoscientific and geospatial data for the benefit of the Australian government and community, to inform public policy, to promote development of Australia's economy, to assist environmental management and to help manage and mitigate natural hazards. Users of GA's data want to know that data are produced to known standards using open and accountable processes and come from a unique and reliable source. Single Point of Truth (SPOT) is Geoscience Australia's standard for processes that produce data. The SPOT methodology describes a consistent approach to transforming an existing data theme into a SPOT. The same methodology can be used for developing a SPOT for a new data theme.

  • Legacy product - no abstract available

  • With the increasing emphasis on electronic rather that paper products, the need for adequate metadata is becoming more and more pressing. The new AGSO Catalog is designed to address this problem at the corporate level. Developed from the AGSO Products Database, the AGSO Catalog is designed to encompass most of AGSOs outputs, datasets and resources. It does this with the help of various intranet and Web interfaces. Projects or authors must initiate Catalog entries, for without an acceptable metadata a product cannot be sold by the Sales Centre, or permission to publish will not be granted. The Catalog is the key to future systems of information distribution and sales. It will permit us to go directly from the metadata to the electronically stored objects, thus enabling automated information distribution and electronic commerce.

  • Geoscience data standards as a field of research may come as a surprise to many geoscientists, who probably think of it as a dull peripheral issue, of little relevance to their domain. However, the subject is gaining rapidly in importance as the information revolution begins to take hold, as ultimately billions of dollars worth of information are at stake. In this article we take a look at what has happened recently in this field, where we think it is heading, and AGSO's role in national geoscience standards.

  • Legacy product - no abstract available

  • We propose an automated capture system that follows the fundamental scientific methodology. It starts with the instrument that captures the data, uses web services to make standardised data reduction programs more widely accessible, and finally uses internationally agreed data transfer standards to make geochemical data seamlessly accessible online from a series of internationally distributed certified repositories. The Australian National Data Service (http://www.ands.org.au/) is funding a range of data capture solutions to ensure that the data creation and data capture phases of research are fully integrated to enable effective ingestion into research data and metadata stores at the institution or elsewhere. They are developing a national discovery service that enables access to data in institutional stores with rich context. No data is stored in this system, only metadata with pointers back to the original data. This enables researchers to keep their own data but also enables access to many repositories at once. Such a system will require standardisation at all phases of the process of analytical geochemistry. The geochemistry community needs to work together to develop standards for attributes as the data are collected from the instrument, to develop more standardised processing of the raw data and to agree on what is required for publishing. An online-collaborative workspace such as this would be ideal for geochemical data and the provision of standardised, open source software would greatly enhance the persistence of individual geochemistry data collections and facilitate reuse and repurposing. This conforms to the guidelines from Geoinformatics for Geochemistry (http://www.geoinfogeochem.org/) which requires metadata on how the samples were analysed.