earthquake geology
Type of resources
Keywords
Publication year
Topics
-
We present earthquake ground motions based upon a paleoseismically-validated characteristic earthquake scenario for the ~ 48 km-long Avonmore scarp, which overlies the Meadow Valley Fault, east of Bendigo, Victoria. The results from the moment magnitude MW 7.1 scenario earthquake indicate that ground motions are sufficient to be of concern to nearby mining and water infrastructure. Specifically, the estimated median peak ground acceleration (PGA) exceeds 0.5 g to more than ~ 10 km from the source fault, and a 0.09 g PGA liquefaction threshold is exceeded out to approximately 50-70 kilometres. Liquefaction of susceptible materials, such as mine tailings, may occur to much greater distances. Our study underscores the importance of identifying and characterising potentially active faults in proximity to high failure-consequence dams, including mine tailings dams, particularly in light of the requirement to manage tailing dams for a prolonged period after mine closure. Paper presented at Australian National Committee on Large Dams (ANCOLD) conference 2020, online. (https://leishman.eventsair.com/ancold-2020-online/)
-
Many mapped faults in the south-eastern highlands of New South Wales and Victoria are associated with apparently youthful topographic ranges, suggesting that active faulting may have played a role in shaping the modern landscape. This has been demonstrated to be the case for the Lake George Fault, and may reasonably be inferred for the poorly characterised Murrumbidgee, Khancoban, Tantangara, Berridale Wrench and Tawonga faults. More than a dozen nearby faults with similar relief are uncharacterised. In general, fault locations and extents are inconsistent across scales of geologic mapping, and rupture lengths and slip rates and behaviours remain largely unquantified. A more comprehensive understanding of these faults is required to support safety assessments for communities and large infrastructure.
-
<div>The Snowy Monaro region hosts major infrastructure critical to Australia’s energy and water security. It also hosts a number of active faults capable of hosting large earthquakes that may impact this infrastructure. However, to date the hazard and consequent risk from these faults has been poorly characterised. This study presents the results of geological investigations to understand how often large earthquakes occur on these faults, and how big they may be, with a focus on the Jindabyne Thrust and the neighbouring Hill Top Fault. The investigation shows at least three earthquakes on the Jindabyne Thrust, with the most recent event occurring within the Holocene, and also demonstrate late Pleistocene activity of the Hill Top Fault. The new insights into earthquake activity rates have implications for our understanding of seismic hazard and risk in the Snowy Monaro region, and elsewhere in the southeast highlands of Australia. Presented at the 2024 PATA Days (Paleoseismology, Active Tectonics, and Archaeoseismology) workshop, Chile