HVC_144686
Type of resources
Keywords
Publication year
Topics
-
As part of the Australian Government's Onshore Energy Security Program (2006-2011) Geoscience Australia in collaboration with Geological Survey of Western Australia acquired magnetotelluric (MT) data along the deep crustal seismic reflection transect across the Yilgarn Craton, Officer Basin and Musgrave Province in Central Western Australia. The aim of the MT survey is to map the electrical resistivity distribution and improve scientific understanding of the crustal and upper mantle structure in this region. This information is complementary to that obtained from deep crustal seismic reflection, seismic refraction, potential field and geological data, which together provide new knowledge of the crustal architecture and geodynamics of the region. It is important for helping to determine the potential for both mineral and energy resources. Data are supplied as EDI files with support information.
-
The Coompana Project is a collaborative project between Geoscience Australia (GA) and the Geological Survey of South Australia (GSSA), which aims to provide new precompetitive geological, geophysical and geochemical data in the under-explored Coompana Province in South Australia. The pre-drilling geophysics program was undertaken to assist the drilling process by reducing the uncertainty associated with intersecting the targeted stratigraphy. Firstly, the magnetotellurics (MT) technique was tested at six sites where previous drill holes were located to benchmark the application of MT method with respect to estimating cover thickness in the region. Comparison with drill-hole details indicates that the method is capable of identifying major stratigraphic structures and providing cover thickness estimates with a reasonable accuracy (within 10%). Subsequently, MT data were acquired at eight proposed drilling sites in February 2017. 1D and 2D data modelling were undertaken using different algorithms to improve confidence level. Finally, estimates of the cover thickness with specified uncertainty at proposed drilling sites are produced. This report presents MT data acquisition and processing, data inversion and preliminary interpretation of model results. Limitations and uncertainty associated with the MT technique is discussed.
-
Broadband and audio magnetotelluric (BBMT and AMT) data at 476 sites on a 2 Km grid were acquired in the Cloncurry region between July and November 2016. The survey covered an area of appriximatly 40 km x 60 km on the eastern margin of the Mount Isa Province. The Cloncurry magnetotelluric (MT) project was funded by the Geological Survey of Queensland and is a collaborative project between the Geological Survey of Queensland and Geoscience Australia. Geoscience Australia managed the project and peformed data QA/QC, data analysis, and produced two-dimensional (2D) and three dimensional (3D) inverse models for both the BBMT and AMT data. This report details the field acquisition program and the methodologies used for processing, analysing, modelling and inverting the data.
-
Magnetotelluric survey data acquired in association with the L189 Gawler-Curnamona-Arrowie Deep Crustal Seismic Survey over the Curnamona Province. This survey was funded through the Onshore Energy Security Program. Data was acquired by Quantec Geoscience. Analysis and modelling was undertaken by Geoscience Australia . The aim of the survey was to produce a two-dimensional image of electrical conductivity structure of the crust and upper mantle over the Curnamona Province. This information is complementary to the reflection seismic and gravity data acquired along the 08GA-C1 traverse. Data are supplied as EDI files with support information.
-
The AusLAMP-Victoria magnetotelluric survey was a collaborative project between the Geological Survey of Victoria and Geoscience Australia. Long period magnetotelluric data were acquired at 100 sites on a half degree grid spacing across Victoria in the south-east of Australia between December 2013 and September 2014. Some repeated sites were acquired in December 2017. Geoscience Australia managed the project and performed data acquisition, data processing, and data QA/QC. In this record, the field acquisition, data QA/QC, and data processing methodologies are discussed. A separate report will provide information on data analysis, data modelling/inversion, and data interpretation.
-
<p>The footprint of a mineral system is potentially detectable at a variety of scales, from the ore deposit to the Earth’s crust and lithosphere. In order to map these systems, Geoscience Australia has undertaken a series of integrated studies to identify key regions of mineral potential using new data from the Exploring for the Future program together with legacy datasets. <p>The recently acquired long-period magnetotellurics (MT) data under the national-scale AusLAMP project mapped a lithospheric scale electrical conductivity anomaly to the east of Tennant Creek. This deep anomaly may represent a potential source region for mineral systems in the crust. In order to refine the geometry of this anomaly, high-resolution broadband and audio MT data were acquired at 131 stations in the East Tennant region and were released in Dec 2019 (http://dx.doi.org/10.26186/5df80d8615367). We have used these high-resolution MT data to produce a new 3D conductivity model to investigate crustal architecture and to link to mineral potential. The model revealed two prominent conductors in the resistive host, whose combined responses link to the deeper lithospheric-scale conductivity anomaly mapped in the broader AusLAMP model. The resistivity contrasts coincide with the major faults that have been interpreted from seismic reflection and potential field data. Most importantly, the conductive structures extend from the lower crust to near-surface, strongly suggesting that the major faults are deep penetrating structures that potentially act as pathways for transporting metalliferous fluids to the upper crust where they can form mineral deposits. Given the geological setting, these results suggest that the mineral prospectivity for iron oxide copper-gold deposits is enhanced in the vicinity of the major faults in the region. <p>This release package includes the 3D conductivity model produced using ModEM code in sGrid format and Geo-referenced depth slices in .tif format.
-
Geoscience Australia (GA) and the Geological Survey of Queensland (GSQ) conducted the Cloncurry Magnetotelluric (MT) survey. MT data (0.001 s to 1000 s in period) at 476 sites with a grid spacing of 2km were acquired over an approximate 40km x 60km area in the Cloncurry region from July to November 2016. The survey area covers the eastern margin of the Mount Isa Block situated to the west of the Eromanga Basin. The MT data can image the thickness of cover, the basement architecture and the crustal architecture in this area that has high resource exploration potential. Data QA/QC were performed during the data acquisition stage of the survey. This release includes processed MT data and a data acquisiton report written by the contractor. Details on the data processing, data analysis, and modelling/inversion of the data will be released as a comprehensive report at a later date.
-
Magnetotelluric survey data acquired in association with the L189 Gawler-Curnamona-Arrowie Deep Crustal Seismic Survey over the Gawler Craton. This survey was a collaborative project with the University of Adelaide and was funded through the Onshore Energy Security Program. The aim of the survey was to produce a two-dimensional image of electrical conductivity structure of the crust and upper mantle over the Gawler Craton. This information is complementary to the reflection seismic and gravity data acquired along the 08GA-G1 traverse. Data are supplied as EDI files with support information.
-
As part of Geoscience Australia’s Exploring for the Future Program, Broadband and Audio Magnetotelluric (MT) data were acquired at 131 stations in the East Tennant region, Northern Territory, in 2019. This survey aimed to characterise major crustal structures, to map cover thickness to assist in stratigraphic drill targeting, and to help understand mineral potential in the region. The data package was released in December 2019 (http://dx.doi.org/10.26186/5df80d8615367) and the 3D resistivity model was released in March 2020 (https://pid.geoscience.gov.au/dataset/ga/135011). We applied a probabilistic approach to inverting high-frequency MT data for cover thickness estimation using the 1D Rj-McMCMT code, newly developed in Geoscience Australia. The inversion employs multiple Markov chains in parallel to generate an ensemble of millions of resistivity models that adequately fit the data given the assigned noise levels. The algorithm uses trans-dimensional Markov chain Monte Carlo techniques to solve for a probabilistic resistivity-depth model. Once the ensemble of models is generated, its statistics are analysed to assess the posterior probability distribution of the resistivity at any particular depth, as well as the number of layers and the depths of the interfaces. This stochastic approach gives a thorough exploration of the model space and a more robust estimation of uncertainty than deterministic methods allow. This release package includes the results of probabilistic inversion of Audio Magnetotelluric data at the 131 stations. They can be used to estimate cover thickness for drill site planning, and to map the base of geological basins in the region. Model data files are large, but can be made available on request to clientservices@ga.gov.au.
-
Magnetotelluric (MT) measures the natural variations of the Earth’ magnetic and electrical (telluric) fields. In 2018, MT data including broadband and audio-magnetotelluric data were collected across the Olympic Domain in South Australia. MT data at 327 sites with spacings from ~1.5km to ~10km were collected by contractor Zonge Engineering and Research Organisation Australia, on behalf of Geological Survey of South Australia and Geoscience Australia. The survey was funded by the Geological Survey of South Australia's PaceCopper Initiative. Six extra MT stations (MASLIN1-6) were collected and funded by Investigator Resources Ltd. They were provided by Geological Survey of South Australia. This data package contains 333 processed edi files across the Olympic Domain in South Australia.