Gravity Recovery and Climate Experiment
Type of resources
Keywords
Publication year
Topics
-
Assessing groundwater storage change in the Great Artesian Basin using GRACE and groundwater budgets
<div>Large, confined aquifer systems play a vital role in sustaining human settlements and industries in many regions. Understanding the sustainability of these water resources requires the evaluation of groundwater storage change. Direct in-situ observation of groundwater storage is limited by the distribution and availability of groundwater level and aquifer storativity data. Here, we use and compare two auxiliary methods, applied at basin and sub-basin scales, to assess groundwater storage changes in the Great Artesian Basin (GAB), one of the World’s largest confined aquifer systems. The first, the groundwater budget, derives storage change as the residual of fluxes in and out of the GAB, assuming they are all accounted for and accurately estimated. The second uses time-variable gravity data from GRACE satellites to estimate temporal changes in groundwater mass, assuming that all other components of the terrestrial water mass change detected by GRACE are correctly subtracted. Despite the depletion observed during the 20th century, groundwater storage is mostly stable during 2002-2022. An increase in storage is detected in the Surat sub-basin; a major recharge area. This increase is attributed to an over-representation of large recharge events during the study period and/or storage recovery following rehabilitation of free-flowing bores. The GRACE approach might overestimate the increase in GAB storage by incorrectly attributing storage increase occurring in overlying aquifers to the GAB. In contrast, the recharge estimates used in the groundwater budgets do not account for flood recharge and might underestimate storage increase in the GAB. <b>Citation:</b> Castellazzi, P., Ransley, T., McPherson, A., Slatter, E., Frost, A., Shokri, A., et al. (2024). Assessing groundwater storage change in the Great Artesian Basin using GRACE and groundwater budgets. <i>Water Resources Research</i>, 60, e2024WR037334. <b>https://doi.org/10.1029/2024WR037334</b>
-
<div>The project ‘Assessing the Status of Groundwater in the Great Artesian Basin’ assessed existing and new geoscientific data and technologies, including satellite data, to improve our understanding of the groundwater system and water balance in the GAB. An updated classification of GAB aquifers and aquitards was produced, linking the hydrostratigraphic classification used in Queensland (Surat Basin) with that used in South Australia (western Eromanga Basin). This revised hydrogeological framework was produced at the whole-of-GAB scale, through the development and application of an integrated basin analysis workflow, producing an updated whole-of-GAB stratigraphic interpretation that is consistent across jurisdictional boundaries. Groundwater recharge rates were estimated across eastern GAB recharge area using environmental tracers and an improved method that integrates chloride concentration in bores, rainfall, soil clay content, vegetation type and surficial geology. Significant revisions were made to the geometry and heterogeneity of the groundwater recharge beds, by acquiring, inverting and interpreting regional scale airborne electromagnetic (AEM) geophysical data, identifying potential connectivity between aquifers, possible structural controls on groundwater flow paths and plausible groundwater sources of spring discharge. A whole-of-GAB water balance was developed to compare inflows and outflows to the main regional aquifer groups. While the whole-of-GAB and sub-basin water balances provide basin-wide perspectives of the groundwater resources, they also highlight the high uncertainties in the estimates of key water balance components that need to be considered for groundwater resource management. Assessment of satellite monitoring data from Gravity Recovery and Climate Experiment (GRACE) and Interferometric Synthetic Aperture Radar (InSAR) shows promise for remote monitoring of groundwater levels at a whole-of-GAB scale in the future to augment existing monitoring networks. This presentation was given at the 2022 Australasian Groundwater Conference 21-23 November (https://www.aig.org.au/events/australasian-groundwater-conference-2022/)