From 1 - 10 / 46
  • The Australian Government is investing in a world first analysis platform for satellite imagery and other Earth observations. From sustainably managing the environment to developing resources and optimising our agricultural potential, Australia must overcome a number of challenges to meet the needs of our growing population. Digital Earth Australia (DEA) will deliver a unique capability to process, interrogate, and present Earth observation satellite data in response to these issues. It will track changes across Australia in unprecedented detail, identifying soil and coastal erosion, crop growth, water quality, and changes to cities and regions. DEA will build on the globally recognised innovation, the Australian Geoscience Data Cube1; which was the winner of the 2016 Content Platform of the Year at the Geospatial World Leadership Awards and was developed as a partnership between GA, CSIRO and the National Collaborative Research Infrastructure Strategy (NCRIS) supported National Computational Infrastructure (NCI).

  • Preamble: The 'National Geochemical Survey of Australia: The Geochemical Atlas of Australia' was published in July 2011 along with a digital copy of the NGSA geochemical dataset (http://dx.doi.org/10.11636/Record.2011.020). The NGSA project is described here: www.ga.gov.au/ngsa. The present dataset contains additional geochemical data obtained on NGSA samples: the Lead Isotopes Dataset. Abstract: Over 1200 new lead (Pb) isotope analyses were obtained on catchment outlet sediment samples from the NGSA regolith archive to document the range and patterns of Pb isotope ratios in the surface regolith and their relationships to geology and anthropogenic activity. The selected samples included 1204 NGSA Top Outlet Sediment (TOS) samples taken from 0 to 10 cm depth and sieved to <2 mm (or ‘coarse’ fraction); three of these were analysed in duplicate for a total of 1207 Pb isotope analyses. Further, 12 Northern Australia Geochemical Survey (NAGS; http://dx.doi.org/10.11636/Record.2019.002) TOS samples from within a single NGSA catchment, also sieved to <2 mm, were analysed to provide an indication of smaller scale variability. Combined, we thus present 1219 new TOS coarse, internally comparable data points, which underpin new national regolith Pb isoscapes. Additionally, 16 NGSA Bottom Outlet Sediment (BOS; ~60 to 80 cm depth) samples, also sieved to <2 mm, and 16 NGSA TOS samples sieved to a finer grainsize (<75 um, or ‘fine’) fraction from selected NGSA catchments were also included to inform on Pb mobility and residence. Lead isotope analyses were performed by Candan Desem as part of her PhD research at the School of Geography, Earth and Atmospheric Sciences, University of Melbourne. After an initial ammonium acetate (AmAc) leach, the samples were digested in aqua regia (AR). Although a small number of samples were analysed after the AmAc leach, all samples were analysed after the second, AR digestion, preparation step. The analyses were performed without prior matrix removal using a Nu Instruments Attom single collector Sector Field-Inductively Coupled Plasma-Mass Spectrometer (SF-ICP-MS). The dried soil digests were redissolved in 2% HNO3 run solutions containing high-purity thallium (1 ppb Tl) and diluted to provide ~1 ppb Pb in solution. Admixture of natural, Pb-free Tl (with a nominal 205Tl/203Tl of 2.3871) allowed for correction of instrumental mass bias effects. Concentrations of matrix elements in the diluted AR digests are estimated to be in the range of 1–2 ppm. The SF-ICP-MS was operated in wet plasma mode using a Glass Expansion cyclonic spray chamber and glass nebuliser with an uptake rate of 0.33 mL/min. The instrument was tuned for maximum sensitivity and provided ~1 million counts per second/ppb Pb while maintaining flat-topped peaks. Each analysis, performed in the Attom’s ‘deflector peak jump’ mode, consists of 30 sets of 2000 sweeps of masses 202Hg, 203Tl, 204Pb, 205Tl, 206Pb, 207Pb and 208Pb, with dwell times of 500 μs and a total analysis time of 4.5 min. Each sample acquisition was preceded by a blank determination. All corrections for baseline, sample Hg interference (202Hg/204Pb ratios were always <0.043) and mass bias were performed online, producing typical in-run precisions (2 standard errors) of ±0.047 for 206Pb/204Pb, ±0.038 for 207Pb/204Pb, ±0.095 for 208Pb/204Pb, ±0.0012 for 207Pb/206Pb and ±0.0026 for 208Pb/206Pb. A small number of samples with low Pb concentrations exhibited very low signal sizes during analysis resulting in correspondingly high analytical uncertainties. Samples producing within-run uncertainties of >1% relative (measured on the 207Pb/204Pb ratio) were discarded as being insufficiently precise to contribute meaningfully to the dataset. Data quality was monitored using interspersed analyses of Tl-doped ~1 ppb solutions of the National Institute of Standards and Technology (NIST) SRM981 Pb standard, and several silicate reference materials: United States Geological Survey ‘BCR-2’ and ‘AGV-2’, Centre de Recherches Pétrographiques et Géochimiques ‘BR’ and Japan Geological Survey ‘JB-2’. In a typical session, up to 50 unknowns plus 15 standards were analysed using an ESI SC-2 DX autosampler. Although previous studies using the Attom SF-ICP-MS used sample-standard-bracketing techniques to correct for instrumental Pb mass bias, Tl doping was found to produce precise, accurate and reproducible results. Based upon the data for the BCR-2 and AGV-2 secondary reference materials, for which we have the most analyses, deviations from accepted values (accuracy) were typically <0.17%. Data for the remaining silicate standards appear slightly less accurate but these results may, to some extent, reflect uncertainty in the assigned literature values for these materials. Replicate runs of selected AR digests yielded similar reproducibility estimates. The results show a wide range of Pb isotope ratios in the NGSA (and NAGS) TOS <2 mm fraction samples across the continent (N = 1219): 206Pb/204Pb: Min = 15.558; Med ± Robust SD = 18.844 ± 0.454; Mean ± SD = 19.047 ± 1.073; Max = 30.635 207Pb/204Pb; Min = 14.358; Med ± Robust SD = 15.687 ± 0.091; Mean ± SD = 15.720 ± 0.221; Max = 18.012 208Pb/204Pb; Min = 33.558; Med ± Robust SD = 38.989 ± 0.586; Mean ± SD = 39.116 ± 1.094; Max = 48.873 207Pb/206Pb; Min = 0.5880; Med ± Robust SD = 0.8318 ± 0.0155; Mean ± SD = 0.8270 ± 0.0314; Max = 0.9847 208Pb/206Pb; Min = 1.4149; Med ± Robust SD = 2.0665 ± 0.0263; Mean ± SD = 2.0568 ± 0.0675; Max = 2.3002 These data allow the construction of the first continental-scale regolith Pb isotope maps (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb, 207Pb/206Pb, and 208Pb/206Pb isoscapes) of Australia and can be used to understand contributions of Pb from underlying bedrock (including Pb-rich mineralisation), wind-blown dust and possibly from anthropogenic sources (industrial, transport, agriculture, residential, waste handling). The complete dataset is available to download as a comma separated values (CSV) file from Geoscience Australia's website (http://dx.doi.org/10.26186/5ea8f6fd3de64). Isoscape grids (inverse distance weighting interpolated grids with a power coefficient of 2 prepared in QGis using GDAL gridding tool based on nearest neighbours) are also provided for the five Pb isotope ratios (IDW2NN.TIF files in zipped folder). Alternatively, the new Pb isotope data can be downloaded from and viewed on the GA Portal (https://portal.ga.gov.au/).

  • This Gunnedah Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Gunnedah Basin is an intracratonic, sedimentary basin in northern NSW. It forms the middle section of the greater Sydney-Gunnedah-Bowen Basin system and mainly consists of Permian and Triassic sedimentary rocks resting on Late Carboniferous to Early Permian volcanics. The Gunnedah Basin is overlain by the Surat Basin and the younger alluvial sediments associated with modern and ancient river systems. The Gunnedah Basin is not considered a single well-connected aquifer, rather a series of porous rock aquifers separated by several non-porous or poorly conductive layers. The Lachlan Fold Belt forms what is thought to be an effective basement although little information is known of its hydrogeological properties. All units of the Gunnedah Basin are of low permeability and significantly lower hydraulic conductivity than the overlying alluvial aquifers. Most of the groundwater resources in the area are extracted from either the overlying Surat Basin or younger alluvial aquifers. There is relatively little groundwater sourced from the aquifers of the Gunnedah Basin, except in areas where the overlying aquifers do not occur. The most viable groundwater source in the Gunnedah Basin are the more porous aquifers of the Triassic sequence.

  • This Wiso Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Wiso Basin, a large intra-cratonic basin in the central Northern Territory, covers about 140,000 square kilometres and is part of the Centralian Superbasin. It is bounded by the Tennant and Tanami regions to the east and west, while a thrust fault separates it from the Arunta Region to the south. The basin adjoins the Georgina Basin in the southeast and joins the Daly and Georgina basins beneath the Cretaceous strata of the Carpentaria Basin in the north. The basin contains a relatively flat, undeformed succession of strata that gently dip towards the main depo-centre, the Lander Trough. About 80% of the basin consists of shallow middle Cambrian strata, while the remaining portion is within the Lander Trough, containing a diverse succession of Cambrian, Ordovician, and Devonian units. The depositional history and stratigraphy reveal that early Cambrian saw widespread basaltic volcanism, with the Antrim Plateau Volcanics forming the base layer and aquitard of the Wiso Basin. The middle Cambrian deposits include the Montejinni Limestone, the oldest sedimentary unit, followed by the Hooker Creek Formation and the Lothari Hills Sandstone. The uppermost Cambrian unit is the Point Wakefield beds. The Ordovician deposits consist of the Hansen River beds, primarily composed of fossiliferous sandstone and siltstone deposited in shallow marine environments. The Devonian unit capping the basin is the Lake Surprise Sandstone, found in the Lander Trough area, formed in shallow marine, shoreline, and fluvial environments during the Alice Springs Orogeny. Three main hypotheses have been proposed for the formation of the Lander Trough: a large crustal downwarp before thrusting of Paleoproterozoic rocks, the formation of a half-graben by faulting along the southern boundary, or the formation of two en-echelon synclines by vertical block movement. While the majority of the Wiso Basin consists of shallow middle Cambrian rocks, the Lander Trough presents a more varied stratigraphic sequence, holding potential for Neoproterozoic and early Cambrian rocks. However, further drilling is needed to verify this. The presence of similar units in neighbouring basins provides valuable insight into the basin's geological history and development.

  • A compilation of thematic summaries of 42 Australian Groundwater Provinces. These consistently compiled 42 summaries comprise the National Hydrogeological Inventory. The layer provides the polygons for each groundwater province in the inventory and thematic information for each province, including location and administration information, demographics, physical geography, surface water, geology, hydrogeology, groundwater, groundwater management and use, environment, land use and industry types and scientific stimulus.

  • This Eucla Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Eucla Basin, located along Australia's southern margin, covers an extensive area of approximately 1,150,000 square kilometres, housing the world's largest grouping of onshore Cenozoic marine sediments. It stretches over 2000 km from east to west and has four main subdivisions: Scaddan Embayment, Esperance Shelf, Nullarbor Shelf, and Yalata Sub-basin offshore. The basin extends about 350 km inland from the modern southern Australian coastline and terminates around 200 km offshore where it meets sediments of the Australian-Antarctic Basin. The sedimentary succession is largely consistent throughout the entire basin. In the west, it overlaps with the Yilgarn Craton and Albany-Fraser Orogen, while in the east, the Gawler Craton and Officer Basin separate it from the Musgrave Province. The basin contains mainly Cenozoic sediments, with thicker sequences in the east due to sediment movement and regional elevation differences. The onshore Eucla Basin hosts an unfaulted sheet of sediment deposited over a south-sloping shelf during several marine transgressions. The basal units rest on a prominent unconformity above the Bight Basin, indicating a break in deposition during the separation of Australia and Antarctica. The sedimentary sequence comprises various units such as the Hampton Sandstone, Pidinga Formation, and Werillup Formation, followed by the Wilson Bluff Limestone, Abrakurrie Limestone, Nullarbor Limestone, and Roe Calcarenite. The basin's geological history is marked by significant events such as marine transgressions during the Eocene, leading to the deposition of extensive limestone formations. The Miocene saw slight tilting of the basin, exposing the Nullarbor Plain to the atmosphere and limiting further sediment deposition. During the late Miocene to Pliocene, barrier and lagoonal transgressions contributed to the formation of the Roe Calcarenite. The Pliocene period witnessed intense karstification and the development of ferricrete and silcrete, resulting in the unique modern-day topography of the region.

  • This Port Phillip-Westernport Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Port Phillip and Westernport basins are small, shallow sedimentary basins located in south-central Victoria, formed during the Late Cretaceous rifting of Australia and Antarctica. They share similar stratigraphy with nearby basins. The Port Phillip Basin is bounded by the Selwyn and Rowsley Faults to the east and west, while the Heath Hill Fault marks the eastern boundary of the Westernport Basin. Both basins have pre-Cenozoic basement rocks comprising folded and faulted Paleozoic metasedimentary rocks and granites from the Lachlan Fold Belt. The Port Phillip Basin's stratigraphy includes Maastrichtian to Cenozoic sedimentary units with intercalated volcanic rocks. The main depocentres are the Sorrento Graben, Ballan Graben/Lal Lal Trough, and Parwan Trough. Notable formations are the Yaloak and Werribee formations, with coal-bearing strata and marine sediments. The Westernport Basin has coastal sediments and volcanic deposits from Paleocene to Holocene. It experienced marine transgressions and regressions due to sea-level fluctuations. Fault movements in the late Pliocene and early Pleistocene formed a fault-bounded depression centered on the Koo Wee Rup Plain. The main units are the Childers Formation, Older Volcanics, Yallock Formation, Sherwood Marl, and Baxter Sandstone. Both basins have Quaternary sediments, including Pleistocene eolian sand sequences, Holocene alluvial and paludal clays, and fluvial sediments in valleys and palaeovalleys. The Port Phillip Basin contains distinct phases of terrestrial and marine deposition, while the Westernport Basin has Eocene volcanism and marine sediments. These basins are important geological features in the region, with various formations representing millions of years of geological history.

  • This Gippsland Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Gippsland Basin is an asymmetrical east-trending rift structure that originated during rifting in the Late Jurassic to Early Cretaceous, as Australia and Antarctica began to separate. Over time, it developed into a continental passive margin basin, with sedimentation continuing to the present day. The basin is characterized by four main phases of tectonic evolution, interspersed with eustatic sea-level variations: initial rifting and extension, mid-Cretaceous contraction, renewed extension, and cessation of rifting in the middle Eocene. The basin's geological structures consist of mainly east to north-east trending features, with the west dominated by north-east structures due to the influence of basement trends. Major fault systems are prominent, compartmentalizing the basin into platforms and depressions separated by bedrock highs. The basin's complex stratigraphic succession reveals fluvial, deltaic, marginal marine, and open marine depositional environments. The sedimentary sequence includes terrigenous siliciclastic sediments from the Upper Cretaceous to Eocene, followed by post-rift sands, clays, coals, and limestones/marls of Oligocene to Holocene age. The Gippsland Basin's sediments are subdivided into four main stratigraphic groups: the Strzelecki, Latrobe, Seaspray, and Sale groups. The Strzelecki Group, dating from the Late Jurassic to Early Cretaceous, consists of non-marine sedimentary rocks deposited in fluvial and lacustrine environments. The Latrobe Group, from Late Cretaceous to early Oligocene, contains siliciclastic sediments deposited in various non-marine to marginal marine settings, showing significant lateral lithofacies variations. The Seaspray Group, dating from Oligocene to Pliocene, formed during a post-rift phase, characterized by marine limestone and marl units and continental clastic sediments. Lastly, the Sale Group consists of Miocene-to-Recent continental clastic sediments forming a thin veneer over the onshore portion of the basin. The Gippsland Basin also contains several basaltic lava fields, with two notable volcanic units—the Thorpdale Volcanics and Carrajung Volcanics—part of the Older Volcanics in Victoria. Overall, the Gippsland Basin's geological history and diverse sedimentary deposits make it a significant area for various geological and geophysical studies, including its hydrocarbon resources concentrated in offshore Latrobe Group reservoirs.

  • This Officer Basin dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Officer Basin is one of Australia's largest intra-cratonic sedimentary basins, spanning approximately 525,000 square kilometres. It contains a thick sedimentary sequence, ranging up to 10,000 m in depth, composed of rocks from the Neoproterozoic to Late Devonian periods. The basin features diverse depositional environments, including marine and non-marine siliclastic and carbonate units, evaporites, and minor volcanic deposits. The Neoproterozoic succession exhibits a range of depositional settings, including pro-delta to shelf, fluvial to shallow marine, lagoonal, glacial, and aeolian systems. The Cambrian to Ordovician sequence reveals evidence of fluvial, shallow marine, aeolian, sabkha to playa, and lacustrine settings. Volcanic rocks occur sporadically within the sequence, like the Cambrian Table Hill Volcanics in WA and the Neoproterozoic Cadlareena Volcanics in SA. The Officer Basin is considered a remnant of the larger Centralian Superbasin that formed during the Neoproterozoic, covering a vast region in central Australia. The Centralian Superbasin formed as a sag basin during the Tonian, accumulating fluvial, marine, and evaporitic sediments, followed by Neoproterozoic glacial deposits. The long-lasting Petermann Orogeny affected the earlier depositional systems, with extensive uplift along the northern margin of the basin leading to deposition of widespread fluvial and marine siliciclastic and carbonate sediments spanning the terminal Proterozoic to Late Cambrian. The Delamerian Orogeny renewed deposition and reactivated existing structures, and promoted extensive basaltic volcanism in the central and western regions of the basin. Later events are a poorly understood stage, though probably involved continued deposition until the Alice Springs Orogeny uplifted the region, terminating sedimentation in the Late Ordovician or Silurian. A suspected Late Devonian extensional event provided space for fluvial siliciclastic sediment deposition in the north-east. Today, the Officer Basin features four distinct structural zones: a marginal overthrust zone along the northern margin, a zone with rupturing by salt diapirs across the main depositional centre, a central thrusted zone, and a broad gently dipping shelf zone that shallows to the south.

  • This Northern Australian Fractured Rock Province dataset contains descriptive attribute information for the areas bounded by the relevant spatial groundwater feature in the associated Hydrogeology Index map. Descriptive topics are grouped into the following themes: Location and administration; Demographics; Physical geography; Surface water; Geology; Hydrogeology; Groundwater; Groundwater management and use; Environment; Land use and industry types; and Scientific stimulus. The Northern Australian Fractured Rock Province is a hydrogeological entity defined for this study, building upon earlier national-scale hydrogeological research. Australia's geological development was predominantly from west to east, with Archean rocks in the west, Proterozoic rocks in central Australia, and Phanerozoic rocks in the east. The North Australian Craton (NAC) is a significant tectonic element underlying 80% of the Northern Territory and extending to parts of Western Australia and northern Queensland, making up the core of the Northern Australian Fractured Rock Province. The NAC primarily consists of Paleoproterozoic rocks overlying Neoarchean basement. It is surrounded by Proterozoic terranes, including the Musgrave, Warumpi, and Paterson orogens to the south and south-west, the Terra Australis Orogen in the east, and the Western Australian Craton in the west. The Northern Australian Fractured Rock Province includes approximately twelve geological regions of mostly Proterozoic age, such as the Kimberley Basin, Speewah Basin, and Tanami Orogen, among others. Additionally, the province is partially overlain by the Kalkarindji Province, characterized by volcanic rocks. This widespread basaltic province serves as the basement for several significant sedimentary basins in northern Australia, including the Wiso, Ord, Bonaparte, Daly, and Georgina basins. In summary, the Northern Australian Fractured Rock Province is a hydrogeological region defined by combining various Proterozoic geological regions, mainly situated within the North Australian Craton. It is bounded by other Proterozoic terranes and covered in part by the Kalkarindji Province, which consists of volcanic rocks and forms the basement for several key sedimentary basins in northern Australia. Understanding this province is crucial for evaluating the hydrogeological characteristics and geological history of the region.