From 1 - 8 / 8
  • Short abstract for initial submission. Publication to be confirmed upon acceptance by the conference organising committee.

  • The under-explored deepwater Otway and Sorell basins lie offshore of southwestern Victoria and western Tasmania in water depths of 100-4,500 m. The basins developed during rifting and continental separation between Australia and Antarctica from the Cretaceous to Cenozoic and contain up to 10 km of sediments. Significant changes in basin architecture and depositional history from west to east reflect the transition from a divergent rifted continental margin to a transform continental margin. The basins are adjacent to hydrocarbon-producing areas of the Otway Basin, but despite good 2D seismic data coverage, they remain relatively untested and their prospectivity is poorly understood. The deepwater (>500 m) section of the Otway Basin has been tested by two wells, of which Somerset 1 recorded minor gas shows within the Upper Cretaceous section. Three wells have been drilled in the Sorell Basin, where minor oil and gas indications were recorded in Maastrichtian rocks near the base of Cape Sorell 1. Building on previous GA basin studies and using an integrated approach, new aeromagnetic data, open-file potential field, seismic and exploration well data have been used to develop new interpretations of basement structure and sedimentary basin architecture. Analysis of potential field data, integrated with interpretation of 2D seismic data, has shown that reactivated north-south Paleozoic structures, particularly the Avoca-Sorell Fault System, control the transition from extension through transtension to a dominantly strike-slip tectonic regime along this part of the southern margin. Depocentres to the west of this structure are large and deep in contrast to the narrow elongate depocentres to its east. Regional-scale mapping of key sequence stratigraphic surfaces across the basins has resulted in the identification of distinct basin phases. Three periods of upper crustal extension can be identified. In the north, one phase of extension in the Early Cretaceous and two in the Late Cretaceous can be mapped. However, to the south, the Late Cretaceous extensional phase extends into the Paleocene, reflecting the diachronous break-up history. Extension was followed by thermal subsidence, and during the Eocene-Oligocene the basin was affected by several periods of compression, resulting in inversion and uplift. The new seismic interpretation shows that depositional sequences hosting active petroleum systems in the producing areas of the Otway Basin are also likely to be present in the southern Otway and Sorell basins. Petroleum systems modelling suggests that if the equivalent petroleum systems elements are present, then they are mature for oil and gas generation, with generation and expulsion occurring mainly in the Late Cretaceous in the southern Otway and northern Sorell basins and during the Paleocene in the Strahan Sub-basin (southern Sorell Basin). The integration of sequence stratigraphic interpretation of seismic data, regional structural analysis and petroleum systems modelling has resulted in a clearer understanding of the tectonostratigraphic evolution of this complex basin system. The results of this study provide new insights into the geological controls on the development of the basins and their petroleum prospectivity.

  • A visit of one month was paid by the writer to the North-West Basin and the Fitzroy area of the Desert Basin. It is largely due to the careful planning of the excursions by the Senior Geologists in charge that a coherent picture of the stratigraphical and tectonical conditions was obtained within the comparatively short time at disposal. This note contains a few remarks on the stratigraphy and tectonics of both areas in connection with oil prospects.

  • The Tasman Frontier region includes c. 3,000,000 sq km of seabed that is thought to be underlain by crust with continental affinities: the Lord Howe Rise, Bellona Trough, Challenger Plateau, Dampier Ridge, Middleton Basin, Fairway Basin, New Caledonia Trough, Norfolk Ridge System, Reinga Basin, and deep-water parts of Taranaki and Northland basins. We have compiled and interpreted c. 100,000 line km of archival seismic reflection data. Using seismic stratigraphy tied to Deep Sea Drilling Project (DSDP) wells, we identify a tectonic and stratigraphic event that we refer to as the 'Tectonic Event of the Cenozoic Tasman Area' (TECTA). This Middle Eocene to Late Oligocene event involved regional uplift followed by 1-2 km of tectonic subsidence of topographic highs, and >2 km of tectonic subsidence in the New Caledonia Trough. Strata below the TECTA reflector (or seismic unit in some places) are locally folded or reverse faulted. We present seismic-stratigraphic evidence that numerous islands were transiently created by uplift on the Lord Howe Rise during the TECTA event. We suggest that the underlying cause of the TECTA event was initiation of the subduction system that has since evolved into the Tonga-Kermadec system. Note: Abstract for initial submission; acceptance to be confirmed.

  • The inboard areas of the Otway Basin, particularly the Shipwreck Trough, are well explored and a petroleum-producing province. However, outboard in water depths greater than 500 m, the basin is underexplored with distant well control and sparse 2D reflection seismic data coverage. The presence of a successful petroleum province onshore and in shallow waters raises the question as to whether these plays may extend further outboard into the deep-water areas. In the deep-water area, structural complexity and poor imaging of events in the legacy seismic data have resulted in interpretation uncertainty and consequentially a high-risk profile for explorers. The 2020 Otway Basin seismic program acquired over 7000-line km of 2D reflection seismic data across the deep-water Otway Basin. In addition, over 10 000 km of legacy 2D seismic data were reprocessed to improve the tie between the inboard wells and the new seismic grid. This new dataset provides the first clear insight into the structural and stratigraphic framework of this frontier area, including better imaging of the sedimentary section and the lower crust, increased structural resolution and improved calibration of the outboard seismic reflectors via ties to the inboard wells. Interpretation of the new data has led to an improved assessment of the structural elements and the extension of regional supersequences into the deep-water areas. These refinements have been used as input into petroleum systems modelling work and will provide a foundation for future work to understand petroleum prospectivity, including the distribution of source, reservoir and seal facies. Presented at 2021 Australian Petroleum Production & Exploration Association (APPEA)

  • A geological assessment of the offshore northern Perth Basin, Western Australia, has been completed as part of the Australian Government's Offshore Energy Security Program. The study provides new insights into the petroleum prospectivity of the basin and integrates results of a newly-developed tectonostratigraphic framework, regional trap integrity analysis and a hydrocarbon seepage survey. The results enhance the potential for new oil and gas discoveries and reduce of exploration risk. Most petroleum accumulations in the northern Perth Basin are associated with Permian and Triassic reservoir and source intervals, and are found onshore and nearshore. New sequence stratigraphic and geochemical studies of key offshore wells, in conjunction with revised biostratigraphy, have shown that the Late Permian-Early Triassic Hovea Member (Kockatea Shale) source interval responsible for these accumulations is regionally extensive offshore and has good to excellent source-rock potential for generating oil. This is supported by fluid inclusion data which identified palaeo-oil columns in most wells analysed in Permian shallow marine-fluvial reservoirs below the regional Kockatea Shale seal. In addition, a palaeo-oil column in Houtman-1 demonstrates an effective oil-charge system in Jurassic strata for the Houtman Sub-basin. Loss of petroleum accumulations because of trap breach is considered a major exploration risk. A trap integrity study evaluated the potential for fault reactivation associated with renewed mid Jurassic extension and Valanginian breakup. 3D geomechanical models indicate that fault strike (NNW-SSE to ESE-WNW) and fault planes intersections represent a first order risk factor. Results of a recent seepage survey provide additional support for the presence of an active petroleum system on this part of the continental margin.

  • Introduction: As part of the Offshore Energy Security Program (2007-2011), Geoscience Australia (GA) undertook an integrated regional study of the deepwater Otway and Sorell basins to improve the understanding of the geology and petroleum prospectivity of the region. The under-explored deepwater Otway and Sorell basins lie offshore of southwestern Victoria and western Tasmania in water depths of 100-4,500 m. The basins developed during rifting and continental separation between Australia and Antarctica from the Cretaceous to Cenozoic and contain up to 10 km of sediment. Significant changes in basin architecture and depositional history from west to east reflect the transition from a divergent rifted continental margin to a transform continental margin. The basins are adjacent to hydrocarbon-producing areas of the Otway Basin, but despite good 2D seismic data coverage, they remain relatively untested and their prospectivity poorly understood. The deepwater (>500 m) section of the Otway Basin has been tested by two wells, of which Somerset 1 recorded minor gas shows. Three wells have been drilled in the Sorell Basin, where minor oil shows were recorded near the base of Cape Sorell 1. Structural framework: Using an integrated approach, new aeromagnetic data, open-file potential field, seismic and exploration well data were used to develop new interpretations of basement structure and basin architecture. This analysis has shown that reactivated north-south Paleozoic structures, particularly the Avoca-Sorell Fault System, controlled the transition from extension through transtension to a dominantly strike-slip tectonic regime along this part of the southern margin. Depocentres to the west of this structure are large and deep in contrast to the narrow elongate depocentres to its east. ...

  • In this study detailed mapping of seismic data from the 1529 km2 Beagle multi-client 3D seismic survey was undertaken to provide a better understanding of the geological history of the central Beagle Sub-basin. Situated in the Northern Carnarvon Basin, oil discovered at Nebo 1 in 1993 indicated the presence of at least one active petroleum system. The central part of the sub-basin has a N-trending horst-graben architecture. Two rifting events from the Hettangian to Sinemurian and the Callovian to Oxfordian were identified. A series of tilted fault blocks formed by the rifting events were locally eroded and progressively draped and buried by post-rift thermal subsidence sedimentation. Mapping indicated the Post-rift I Lower Cretaceous Muderong Shale regional seal is anomalously thin or absent in the intra-horst graben area. Burial history 1D modelling indicates that at Nebo 1, the most rospective potential source rocks within the Middle-Upper Jurassic section where in the early oil window; however, if present within the Beagle and Cossigny trough depocentres, these sediments would have entered the oil window prior to the deposition of the Muderong Shale regional seal. Upper Jurassic shales provide seal for the oil pool intersected in Nebo 1. The Tertiary section is dominated by a prograding carbonate wedge which has driven a second phase of thermal maturation observed in the Paleogene (Nebo 1) and Miocene (Manaslu 1). Potential source rocks are currently at their maximum depth of burial and maximum thermal maturity. Modest inversion on some faults prior to the Early Cretaceous has created traps and if source rocks retain generative potential, favourable traps could be now actively receiving hydrocarbon charge. Potential plays include compaction folds over tilted horst blocks, drape and small inversion induced anticlines, basin-floor fans and intra-formational traps. Deep faults may act as conduits for hydrocarbons migrating from mature potential source rocks into Jurassic to Cretaceous plays. Younger sediments appear to lack access to migration pathways provided by deeper faults.