From 1 - 10 / 12
  • Geoscience Australia (GA) has embarked on a project to update the seismic hazard model for Australia through the National Seismic Hazard Assessment (NSHA18) project. The draft NSHA18 update yields many important advances on its predecessors, including: 1) calculation in a full probabilistic framework using the Global Earthquake Model’s OpenQuake-engine; 2) consistent expression of earthquake magni-tudes in terms of moment magnitude, MW; 3) inclusion of epistemic uncertainty through the use of alterna-tive source models; 4) inclusion of a national fault-source model based on the Australian Neotectonic Features database; 5) the use of modern ground-motion models; and 6) inclusion of epistemic uncertainty on seismic source models, ground-motion models and fault occurrence and earthquake clustering models. The draft NSHA18 seismic design ground motions are significantly lower than those in the current (1991-era) AS1170.4–2007 hazard map at the 1/500-year annual ground-motion exceedance probability (AEP) level. However, draft values at lower probabilities (i.e., 1/2475-year AEP) are entirely consistent, in terms of the percentage area of land mass exceeding different ground-motion thresholds, with other Stable Continental Regions (e.g., central & eastern United States). The large reduction in seismic hazard at the 1/500-year AEP level has led to engineering design professionals questioning whether the new draft design values will provide enough structural resilience to potential seismic loads from rare large earthquakes. This process underscores the challenges in developing national-scale probabilistic seismic hazard analyses (PSHAs) in slowly-deforming regions, where a 1/500-year AEP design level is likely to be much lower than the ANCOLD Maximum Credible Earthquake (MCE) ground motions. Consequently, a robust discussion among the Standards Australia code committee, hazard practitioners and end users is required to consider alternative hazard and/or risk objectives for future standards. Site-specific PSHAs undertaken for owners and operators of extreme and high consequence dams generally require hazard evaluations at lower probabilities than for typical structural design as recommended in AS1170.4. However, modern national assessments, such as the NSHA18, can provide a benchmark in terms of recommended seismicity models, fault-source models, ground-motion models, as well as hazard values, for low-probability site-specific analyses. With a new understanding of earthquake processes in Australia leading to lower ground-motion hazard values for higher probability events (e.g., 1/500-year AEP), we should also ask whether the currently recommended design probabilities provide an acceptable level of seismic resilience to critical facilities (such as dams) and regular structures. Abstract presented at the 2017 Australian National Committee on Large Dams (ANCOLD) Conference

  • Damaging earthquakes in Australia and other regions characterised by low seismicity are considered low probability, high consequence events. Uncertainties in modeling earthquake occurrence rates and ground motions pose unique challenges to forecasting seismic hazard in these regions. In 2018 Geoscience Australia released its National Seismic Hazard Assessment (NSHA18). Results from the NSHA18 indicate significantly lower seismic hazard across almost all Australian localities at the 1/500 annual exceedance probability (AEP) relative to the factors in the Australian earthquake loading standard; the AS1170.4. Due to concerns that the 1/500 AEP hazard factors proposed in the NSHA18 would not assure life safety throughout the continent, the amended AS1170.4 (revised in 2018) retains seismic demands developed in the early 1990s and also introduces a minimum hazard design factor of Z = 0.08 g. The hazard estimates from the NSHA18 have challenged notions of seismic hazard in Australia in terms of the probability of damaging ground motions and raises questions as to whether current practices in probabilistic seismic hazard analysis (PSHA) deliver the outcomes required to protect communities in low-seismicity regions, such as Australia. By contrast, it is also important that the right questions are being asked of hazard modelers in terms of the provision of seismic demand objectives that are fit for purpose. In the United States and Canada, a 1/2475 AEP is used for national hazard maps due to concerns that communities in low-to-moderate seismicity regions are considerably more at risk to extreme ground-motions. The adoption of a 1/2475 AEP seismic demands within the AS1170.4 would bring it in to line with other international building codes in similar tectonic environments and would increase seismic demand factors to levels similar to the 1991 hazard map. This, together with other updates, may be considered for future revisions to the standard. Presented at the Technical Sessions of the 2021 Seismological Society of America Annual Meeting (SSA)

  • All modern ground motion prediction equations (GMPEs) are now calibrated to the moment magnitude scale MW, it is therefore essential that earthquake rates are also expressed in terms of moment magnitudes for probabilistic seismic hazard analyses. However, MW is not routinely estimated for earthquakes in Australia because of Australia’s low-to-moderate level of seismicity, coupled with the relatively sparse seismic recording networks. As a result, the Australian seismic catalogue has magnitude measures mainly based on local magnitudes, ML. To homogenise the earthquake catalogue based on a uniform MW, a “reference catalogue” that includes earthquakes with available MW estimates was compiled. This catalogue consists of 240 earthquakes with original MW values between 2.0 and 6.58. The reference catalogue served as the basis for the development of magnitude conversion equations between MW and ML. The conversions are developed using general orthogonal regression. Different functional forms for the conversion equations were considered and their impact on seismic hazard is explored. Synthetic earthquake catalogues with a “known” ­b-value are generated about an arbitrary location. These catalogues are subsequently perturbed according to different magnitude adjustment assumptions. It is found that the results of seismic hazard analyses at our site are sensitive to the implementation algorithm of such equations. For the considered scenario, the results show a 20-40% reduction in PGA hazard (at the 10% in 50-year probability of exceedance level), depending on the selection of the functional form as well as the method for applying the magnitude conversion equations. Presented at the 2018 Seismological Society of America (SSA) Annual Meeting

  • Tsunamis are unpredictable and infrequent but potentially large impact natural disasters. To prepare, mitigate and prevent losses from tsunamis, probabilistic hazard and risk analysis methods have been developed and have proved useful. However, large gaps and uncertainties still exist and many steps in the assessment methods lack information, theoretical foundation, or commonly accepted methods. Moreover, applied methods have very different levels of maturity, from already advanced probabilistic tsunami hazard analysis for earthquake sources, to less mature probabilistic risk analysis. In this review we give an overview of the current state of probabilistic tsunami hazard and risk analysis. Identifying research gaps, we offer suggestions for future research directions. An extensive literature list allows for branching into diverse aspects of this scientific approach. Appeared online in Front. Earth Sci., 29 April 2021

  • Winds, waves and tides associated with storms are capable of causing severe damage to coastal property and infrastructure. Locations that are prone to erosion and inundation first require an accurate assessment of risk before deciding the most cost effective mitigation option. This research aims to produce probabilistic assessments of the coastal erosion and inundation risks associated with storms, particularly for coincident or clustered events, thereby helping to strengthen the resilience of coastal communities. Coastal erosion and inundation hazard is modelled in this study by simulations of realistic storm condition forcing (waves and tides) through a morphodynamic model to calculate return periods for maximum extent of shoreline retreat. This approach of characterizing erosion response return periods is superior to the assumption that the most energetic storm causes maximum erosion. This methodology is demonstrated for beaches in metropolitan Adelaide and at Old Bar, NSW. These sites were selected to test the methodology for a span of geographic conditions in terms of storm climate and deep-water wave exposure, working towards developing this method into a transportable framework applicable to other coastal areas. Desktop and field assessments of each site were conducted to document geomorphic and sediment characteristics to inform shoreline modelling. Having established the historical framework at each location, multivariate statistical analysis of wave (buoy or hindcast models) and tides for peak storm events has allowed for the synthesis of realistic future conditions. This complex sequencing of cycling between accretion and erosion incorporating cross-shore and alongshore sediment transport has been estimated using a probabilistic shoreline translation model. Here, model outputs coupled with a scaled exposure analysis, will describe the damage to coastal infrastructure for the two case study sites. This information can then be used to inform coastal management strategies. Presented at the Australasia's emergency management and public safety conference AFAC17

  • Since the publication of the Global Seismic Hazard Assessment Project (GSHAP) hazard map in 1999, Australia has stood out as a region of high earthquake hazard among its stable continental region (SCR) peers. The hazard map underpinning the GSHAP traces its lineage back to the 1990 assessment of Gaull and others. This map was modified through a process of expert judgement in response to significant Australian earthquakes (notably the MW 6.2, 6.3 and 6.6 1988 Tennant Creek sequence and the deadly 1989 MW 5.4 Newcastle earthquake). The modified map, developed in 1991 (McCue and others, 1993), underpins Standards Australia’s structural design actions to this day (AS1170.4–2007). But does this assessment make sense with our current understanding of earthquake processes in SCRs? Geoscience Australia (GA) have embarked to update the seismic hazard model for Australia through the National Seismic Hazard Assessment (NSHA18) project. Members of the Australian seismological community were solicited to contribute alternative seismic source models for consideration as inputs to the updated Australian NSHA18. This process not only allowed for the consideration of epistemic uncertainty in the hazard model in a more comprehensive and transparent manner, but also provides the community as a whole ownership of the final model. The 3rd party source models were assessed through an expert elicitation process that weighed the opinion of each expert based on their knowledge and ability to judge relevant uncertainties. In total, 19 independent seismic source models (including regional and background area sources, smoothed seismicity and seismotectonic sources) were considered in the complete source model. To ensure a scientifically rigorous, transparent and quality product, GA also established a Scientific Advisory Panel to provide valuable and ongoing feedback during the development of the NSHA18. The NSHA18 update yields many important advances on its predecessors, including: calculation in a full probabilistic framework using the OpenQuake-engine; consistent expression of earthquake magnitudes in terms of MW; inclusion of epistemic uncertainty through the use of third-party source models; inclusion of a national fault-source model based on the Australian Neotectonic Features database; inclusion of epistemic uncertainty on fault occurrence models and earthquake clustering; and the use of modern ground-motion models. The preliminary NSHA18 design values are significantly lower than those in the current (1991-era) AS1170.4–2007 map at the 10% in 50-year probability level. However, draft values at lower probabilities (i.e., 2% in 50-years) are entirely consistent (in terms of the percentage land mass exceeding different PGA thresholds) with other SCRs with low strain rates (e.g. the central & eastern United States). The large reduction in seismic hazard at the 10% in 50-year probability level has led to much consternation amongst the building code committee in terms of whether the new draft design values will allow enough resilience to seismic loads. This process underscores the challenges in developing national-scale PSHAs in slowly deforming regions, where 10% in 50-year probability level may not adequately capture the maximum considered earthquake ground motions. Consequently, a robust discussion is required is amongst the Australian building code committee (including hazard practitioners) to determine alternative hazard and/or risk objectives that could be considered for future standards. Presented at the Probabilistic Seismic Hazard Assessment (PSHA) Workshop 2017, Lenzburg, Switzerland

  • Historical reports of earthquake effects from the period 1681 to 1877 in Java, Bali and Nusa Tenggara are used to independently test ground motion predictions in Indonesia’s 2010 national probabilistic seismic hazard assessment (PSHA). Assuming that strong ground motion occurrence follows a Poisson distribution, we cannot reject Indonesia’s current PSHA for key cities in Java at 95% confidence. However, the results do suggest that seismic hazard may be underestimated for the megacity Jakarta. Ground motion simulations for individual large damaging events are used to identify plausible source mechanisms, providing insights into the major sources of earthquake hazard in the region and possible maximum magnitudes for these sources. The results demonstrate that large intraslab earthquakes have been responsible for major earthquake disasters in Java, including a ~Mw 7.5 intraslab earthquake near Jakarta in 1699 and a ~Mw 7.8 event in 1867 in Central Java. The results also highlight the potential for large earthquakes to occur on the Flores Thrust. We require an earthquake with Mw 8.4 on the Flores Thrust to reproduce tsunami observation from Sulawesi and Sumbawa in 1820. Furthermore, large shallow earthquakes (Mw > 6) have occurred in regions where active faults have not been mapped identifying the need for further research to identify and characterize these faults for future seismic hazard assessments. <b>Citation:</b> Jonathan Griffin, Ngoc Nguyen, Phil Cummins, Athanasius Cipta; Historical Earthquakes of the Eastern Sunda Arc: Source Mechanisms and Intensity‐Based Testing of Indonesia’s National Seismic Hazard Assessment. <i>Bulletin of the Seismological Society of America </i>2018; 109 (1): 43–65. doi: https://doi.org/10.1785/0120180085

  • This paper presents a methodology for post-earthquake probabilistic risk (of damage) assessment that we propose in order to develop a computational tool for automatic or semi-automatic assessment. The methodology utilizes the same so-called risk integral which can be used for pre-earthquake probabilistic assessment. The risk integral couples (i) ground motion hazard information for the location of a structure of interest with (ii) knowledge of the fragility of the structure with respect to potential ground motion intensities. In the proposed post-mainshock methodology, the ground motion hazard component of the risk integral is adapted to account for aftershocks which are deliberately excluded from typical pre-earthquake hazard assessments and which decrease in frequency with the time elapsed since the mainshock. Correspondingly, the structural fragility component is adapted to account for any damage caused by the mainshock, as well as any uncertainty in the extent of this damage. The result of the adapted risk integral is a fully-probabilistic quantification of post-mainshock seismic risk that can inform emergency response mobilization, inspection prioritization, and reoccupancy decisions.

  • The NEAM Tsunami Hazard Model 2018 (NEAMTHM18) is a probabilistic hazard model for tsunamis generated by earthquakes. It covers the coastlines of the North-eastern Atlantic, the Mediterranean, and connected seas (NEAM). NEAMTHM18 was designed as a three-phase project. The first two phases were dedicated to the model development and hazard calculations, following a formalized decision-making process based on a multiple-expert protocol. The third phase was dedicated to documentation and dissemination. The hazard assessment workflow was structured in Steps and Levels. There are four Steps: Step-1) probabilistic earthquake model; Step-2) tsunami generation and modeling in deep water; Step-3) shoaling and inundation; Step-4) hazard aggregation and uncertainty quantification. Each Step includes a different number of Levels. Level-0 always describes the input data; the other Levels describe the intermediate results needed to proceed from one Step to another. Alternative datasets and models were considered in the implementation. The epistemic hazard uncertainty was quantified through an ensemble modeling technique accounting for alternative models’ weights and yielding a distribution of hazard curves represented by the mean and various percentiles. Hazard curves were calculated at 2,343 Points of Interest (POI) distributed at an average spacing of ∼20 km. Precalculated probability maps for five maximum inundation heights (MIH) and hazard intensity maps for five average return periods (ARP) were produced from hazard curves. In the entire NEAM Region, MIHs of several meters are rare but not impossible. Considering a 2% probability of exceedance in 50 years (ARP≈2,475 years), the POIs with MIH >5 m are fewer than 1% and are all in the Mediterranean on Libya, Egypt, Cyprus, and Greece coasts. In the North-East Atlantic, POIs with MIH >3 m are on the coasts of Mauritania and Gulf of Cadiz. Overall, 30% of the POIs have MIH >1 m. NEAMTHM18 results and documentation are available through the TSUMAPS-NEAM project website (http://www.tsumaps-neam.eu/), featuring an interactive web mapper. Although the NEAMTHM18 cannot substitute in-depth analyses at local scales, it represents the first action to start local and more detailed hazard and risk assessments and contributes to designing evacuation maps for tsunami early warning. Appeared online in Front. Earth Sci., 05 March 2021.

  • Geoscience Australia has produced a draft National Seismic Hazard Assessment (NSHA18), together with contributions from the wider Australian seismology community. This paper provides an overview of the provisional peak ground acceleration (PGA) hazard values and discusses rationale for changes in the proposed design values at the 1/500-year annual exceedance probability (AEP) level relative to Standards Australia’s AS1170.4–2007 design maps. The NSHA18 update yields many important advances on its predecessors, including: consistent expression of earthquake magnitudes in moment magnitude; inclusion of epistemic uncertainty through the use of third-party source models; inclusion of a national fault-source model; inclusion of epistemic uncertainty on fault-slip-model magnitude-frequency distributions and earthquake clustering; and the use of modern ground-motion models through a weighted logic tree framework. In general, the 1/500-year AEP seismic hazard values across Australia have decreased relative to the earthquake hazard factors the AS1170.4–2007, in most localities significantly. The key reasons for the decrease in seismic hazard factors are due to: the reduction in the rates of moderate-to-large earthquakes through revision of earthquake magnitudes; the increase in b-values through the conversion of local magnitudes to moment magnitudes, particularly in eastern Australia, and; the use of modern ground-motion attenuation models. Whilst the seismic hazard is generally lower than in the present standard, we observe that the relative proportion of the Australian landmass exceeding given PGA thresholds is consistent with other national hazard models for stable continental regions. Abstract presented at the 2017 Australian Earthquake Engineering Society (AEES) Conference