Tasmanides
Type of resources
Keywords
Publication year
Topics
-
<div>The Australian continent comprises a broad dichotomy of crustal settings; from the Archean–Proterozoic cratonic core in the centre and west, to the accretionary margin of the Tasmanides in the east. These continental blocks meet at the Tasman Line, where successive arc systems built the eastern third of Australia in ca. 250 Myrs. This interface represents one of Australia’s most fundamental crustal boundaries and is marked by the ca. 520–490 Ma Delamerian Orogen in south-eastern Australia. Despite its first-order crustal control on tectonism, magmatism, deformation, and mineral systems in the area, the Delamerian Orogen remains poorly understood. Here, we present new zircon Hf-O isotopic and trace element data on 32 samples across the south-east Tasman Line. This initial dataset, which will grow over the next 12 months as part of Geoscience Australia’s Exploring for the Future program, will be used to constrain the time-space crustal architecture and evolution of Australia’s south-eastern Precambrian cratonic margin. These first samples include Paleoarchean to Devonian felsic magmatic rocks from the eastern Gawler Craton, across the Delamerian Orogen, to the Central Lachlan Orogen, and show that the crust of south-east Australia has a significant pre-history, with crustal reworking a major feature across the region. Delamerian arc magmatism appears to have involved significant reworking of Australia’s south-eastern Precambrian margin, as recorded by sub-chondritic Hf-isotope data. Assuming a significant mantle-component in the initial arc magmas, contamination by the ancient overlying continental rocks, some as old as ca. 3250 Ma, resulted in less juvenile compositions. This observation suggests Australia’s south-eastern Gondwanan margin may have consisted of a west-dipping continental arc, rather than an offshore island arc. The ‘heavy’ supracrustal δ18O of magmatic rocks across the area since the Paleoproterozoic is testament to the long-lived terrestrial nature of this continental margin, and its influence on magmatism across >1 billion years of Earth history. </div> This Abstract was submitted/presented to the 2022 Specialist Group in Geochemistry, Mineralogy and Petrology (SGGMP) Conference 7-11 November (https://gsasggmp.wixsite.com/home/biennial-conference-2021)
-
Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. This Record presents new U-Pb zircon geochronology from the Loch-Lilly Kars and Lake Wintlow (as described by Clark et al. 2024) Belts of the central Delamerian Orogen (Foden et al., 2020; Gilmore et al., 2023; Mole et al., 2023), performed on Geoscience Australia’s (GA) sensitive high-resolution ion microprobe (SHRIMP). The eight samples presented here (three sedimentary and five igneous rocks; Table i) were collected during Geoscience Australia’s drilling campaign across the region, which consisted of 17 drill-holes (Pitt et al., 2023), using two drilling techniques (coiled-tube rotary and conventional diamond). This work was performed as part of the MinEx CRC National Drilling initiative (NDI) and Geoscience Australia’s Darling-Curnamona-Delamerian project of the Exploring for the Future program (EFTF; <a href="https://www.eftf.ga.gov.au/">https://www.eftf.ga.gov.au/</a>). The primary aims of this drilling were to (1) understand and constrain the geology of the southern Loch-Lilly Kars Belt; and (2) assess whether Cambrian magmatic rocks continued to the south-west in the Lake Wintlow Belt, marking a possible continuation of the Stavely Belt volcanic arc rocks observed in western Victoria (Bowman et al., 2019; Lewis et al., 2016; Lewis et al., 2015; Schofield, 2018; Figure i). As both these regions are covered, this new drilling and the geochronology they allow provide the first constraints on the age of these rock units. In addition, due to the lack of surface correlation and detailed geological mapping, these units currently have no officially-defined stratigraphic nomenclature and remain unnamed. For detailed information on all drill-holes completed as part of the survey, we direct readers to the summary report by Pitt et al. (2023): <a href="https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/148639">eCat 148639</a>.