From 1 - 10 / 28
  • With a population of over 250 million people, Indonesia is the fourth most populous country in the world (United Nations, 2013). Indonesia also experiences more earthquakes than any other country in the world (USGS, 2015). Its borders encompass one of the most active tectonic regions on Earth including over 18 000 km of major tectonic plate boundary, more than twice that of Japan or Papua New Guinea (Bird, 2003). The potential for this tectonic activity to impact large populations has been tragically demonstrated by the 20004 Sumatra earthquake and tsunami. In order to inform earthquake risk reduction in Indonesia, a new national earthquake hazard map was developed in 2010 (Irsyam et al., 2010). In this report historical records of damaging earthquakes from the 17th to 19th centuries are used to test our current understanding of earthquake hazard in Indonesia and identify areas where further research is needed. In this report we address the following questions: - How well does our current understanding of earthquake hazard in Indonesia reflect historical activity? - Can we associate major historical earthquakes with known active faults, and are these accounted for in current assessments of earthquake hazard? - Does the current earthquake hazard map predict a frequency and intensity of shaking commensurate with the historical record? - What would the impact of these historical earthquakes be if they were to reoccur today? To help answer questions like these, this report collates historical observations of eight large earthquakes from Java, Bali and Nusa Tenggara between 1699 and 1867. These observations are then used to: - Identify plausible sources for each event; - Develop ground shaking models using the OpenQuake Engine (GEM Foundation, 2015); - Assess the validity of the current national seismic hazard map; and - Estimate fatalities were the historical events to occur today using the InaSAFE (InaSAFE.org, 2015) software.

  • Many earthquakes in Indonesia have caused a large number of fatalities. Disaster risk-reduction of fatalities requires a representative fatality model derived from fatality data caused by historical earthquakes in Indonesia. We develop an empirical fatality model for Indonesia by relating macroseismic intensity to fatality rate using compiled subdistrict level fatality rate data and numerically simulated ground shaking intensity for four recent damaging events. The fatality rate data are compiled by collecting population and fatality statistics of the regions impacted by the selected events. The ground shaking intensity is numerically estimated by incorporating a finite fault model of each event and local site conditions approximated by topographically-based site amplifications. The macroseismic intensity distribution of each event is generated by using ShakeMap software with a selected pair of ground motion predictive equation (GMPE) and ground motion to intensity conversion equation (GMICE). The developed fatality model is a Bayesian generalized linear model where the fatality rate is assumed to follow a mixture of a Bernoulli and a gamma distribution. The probability of zero fatality rate and the mean non-zero fatality rate is linked to a linear function of shaking intensity by the logit and the log link functions, respectively. We estimate posterior distribution of the parameters of the model based on the Hamilton Monte Carlo algorithm. For validation of the developed model we calculate fatalities of the past events from the EXPO-CAT catalog and compare the estimates with the EXPO-CAT fatality records. While the developed fatality model can provide an estimate of the range of fatalities for future events it needs on-going refinement by incorporation of additional fatality rate data from past and future events.

  • The Greater Metro Manila Area is one of the world's megacities and is home to about 12 million people. It is located in a region at risk from earthquakes, volcanic eruptions, tropical cyclones, riverine flooding, landslides and other natural hazards. Major flooding affected the Greater Metro Manila Area in September 2009 following the passage of Typhoon Ketsana (known locally as Typhoon Ondoy). Following this event, the Australian Aid Program supported Geoscience Australia to undertake a capacity building project with its partner agencies in the Government of the Philippines. The output of this project has been a series of risk information products developed by agencies in the Collective Strengthening of Community Awareness for Natural Disasters (CSCAND) group. These products quantify the expected physical damage and economic loss to buildings caused by earthquakes, tropical cyclone severe wind and riverine flooding across the Greater Metro Manila Area. Spatial data is a key input to the development of hazard models and information on exposure, or the 'elements at risk'. The development of a spatially enabled exposure database was a crucial element in the construction of risk information products for the Greater Metro Manila Area. The database provides one central repository to host consistent information about the location, size, type, age, residential population and structural characteristics of buildings within the area of interest. Unique spatial analysis techniques were employed to quantify and record important aspects of the built environment, for inclusion in the database. The process of exposure data development within the Greater Metro Manila Area, including a new application developed by Geoscience Australia for estimating the geometric characteristics of buildings from high resolution elevation data and multi-spectral imagery, will be presented.

  • The Philippine Institute of Volcanology and Seismology (PHIVOLCS) and Geoscience Australia (GA) have developed a long-term partnership in order to better understand and reduce the risks associated with earthquake hazards in the Philippines. The Project discussed herein was supported by the Australian Agency for International Development (AusAID). Specifically, this partnership was designed to enhance the exposure and damage estimation capabilities of the Rapid Earthquake Damage Assessment System (REDAS), which has been designed and built by PHIVOLCS. Prior to the commencement of this Project, REDAS had the capability to model a range of potential earthquake hazards including ground shaking, tsunami inundation, liquefaction and landslides, as well as providing information about elements at risk (e.g., schools, bridges, etc.) from the aforementioned hazards. The current Project enhances the exposure and vulnerability modules in REDAS and enable it to estimate building damage and fatalities resulting from scenario earthquakes, and to provide critical information to first-responders on the likely impacts of an earthquake in near real-time. To investigate this emergent capability within PHIVOLCS, we have chosen the pilot community of Iloilo City, Western Visayas. A large component of this project has been the compilation of datasets to develop building exposure models, and subsequently, developing methodologies to make these datasets useful for natural hazard impact assessments. Collection of the exposure data was undertaken at two levels: national and local. The national exposure dataset was gathered from the Philippines National Statistics Office (NSO) and comprises basic information on wall type, roof type, and floor area for residential buildings. The NSO census dataset also comprises crucial information on the population distribution throughout the Philippines. The local exposure dataset gathered from the Iloilo City Assessors Office includes slightly more detailed information on the building type for all buildings (residential, commercial, government, etc.) and appears to provide more accurate information on the floor area. However, the local Iloilo City dataset does not provide any information on the number of people that occupy these buildings. Consequently, in order for the local data to be useful for our purposes, we must merge the population data from the NSO with the local Assessors Office data. Subsequent validation if the Iloilo City exposure database has been conducted through targeted foot-based building inventory surveys and has allowed us to generate statistical models to approximate the distribution of engineering structural systems aggregated at a barangay level using simple wall and roof-type information from the NSO census data. We present a comparison of the national and local exposure data and discuss how information assembled from the Iloilo City pilot study - and future study areas where detailed exposure assessments are conducted - could be extended to describe the distribution of building stock in other regions of the Philippines using only the first-order national-scale NSO data. We present exposure information gathered for Iloilo City at barangay level in a format that can be readily imported to REDAS for estimating earthquake impact.

  • In June 2012 Geoscience Australia was commissioned by Commonwealth Scientific and Industrial Research Organisation (CSIRO) to undertake detailed wind hazard assessments for 14 Pacific Island countries and East Timor as part of the Pacific-Australia Climate Change Science and Adaptation Planning (PACCSAP) program. PACCSAP program follows on from work Geoscience Australia did for the Pacific Climate Change Science Program (PCCSP) looking at CMIP3 generation of climate models. The objective of this study is to improve scientific knowledge by examining past climate trends and variability to provide regional and national climate projections. This document presents results from current and future climate projections of severe wind hazard from tropical cyclones for the 15 PACCSAP partner countries describing the data and methods used for the analysis. The severe wind hazard was estimated for current (1981 to 2000) and future (2081 to 2100) climate scenarios. Tropical-cyclone like vortices from climate simulations conducted by CSIRO using six Coupled Model Intercomparison Project phase 5 (CMIP5) models (BCC-CSM1.1, NorESM1-M, CSIRO-Mk3.6, IPSL-CM5A, MRI-CGM3 and GFDL-ESM2M) as well as the International Best Track Archive for Climate Stewardship were used as input to the Geoscience Australia's Tropical Cyclone Risk Model to generate return period wind speeds for the 15 PACCSAP partner countries. The Tropical Cyclone Risk Model is a statistical-parametric model of tropical cyclone behaviour, enabling users to generate synthetic records of tropical cyclones representing many thousands of years of activity. The 500-year return period wind speed is analysed and discussed into more details in this report, since it is used as a benchmark for the design loads on residential buildings. Results indicate that there is not a consistent spatial trend for the changes in 500-year cyclonic wind speed return period when CMIP5 models are compared individually. BCC-CSM1M and IPSL-CM5A presented an increase in the annual TC frequency for East Timor, northern hemisphere and southern hemisphere. On the other hand, NorESM1M showed a decrease in the annual TC frequency for the same areas. The other three models showed a mixed of increase and decrease in their annual TC frequency. When CMIP5 models were analysed by partner county capitals for the 500-year cyclonic wind speed return period, IPSL-CM5A and GFDL-ESM2M models presented an increase in the cyclonic wind speed intensity for almost all capitals analysed with exception of Funafuti (GFDL-ESM2M), which presented a decrease of 0.7% and Honiara (IPSL-CM5A) with a decrease of 1.6%. The tropical cyclone annual frequency ensemble mean indicates an increase in the tropical cyclone frequency within all three regions considered in this study. When looking at individual capitals, a slight increase in the 500-year return period cyclonic wind speed ensemble mean varying between 0.8% (Port Vila) to 9.1% (Majuro) is noticed. A decline around 2.4% on average in the 500-year return period cyclonic wind speed ensemble mean is observed in Dili, Suva, Nukualofa and Ngerulmud. The ensemble spatial relative change did not show any particular consistency for the 500-year cyclonic wind speed. Areas where Marshall Islands and Niue are located presented an increase in the 500-year cyclonic wind speed while a decrease is observed in areas around South of Vanuatu, East of Solomon Islands, South of Fiji and some areas in Tonga. The information from the evaluation of severe wind hazard from tropical cyclones, together with other PACCSAP program outputs, will be used to build partner country capacity to effectively adapt and plan for the future and overcome challenges from climate change.

  • Probabilistic earthquake hazard maps were prepared for the Fiji Islands. Damage has been caused by Fiji earthquakes around 1850, in 1884, 1902, 1919, 1932 (twice), 1953 and 1979. No previous assessment had produced a comprehensive description of the earthquake hazard in Fiji and the present study was initiated in 1990 when the author was attached to the Mineral Resources Department, Fiji. Collection and analysis of data continued at MRD until 1992 and the study was completed at the Australian Geological Survey Organisation in 1993-1997. The aim of the study was to produce probabilistic earthquake hazard maps which can be used in the National Building Code for Fiji, for design of special structures, for planning, for emergency management and for risk management. Few, if any, similar studies have been undertaken in the seismically active Southwest Pacific.

  • The Assessment of Tropical Cyclone Risks in the Pacific Region project represents a collaboration between DIICCSRTE and Geoscience Australia with PCRAFI and AIR Worldwide. Building on the expertise of each organisation, the project will deliver an assessment of the financial risks to buildings, infrastructure and agriculture arising from tropical cyclones (TCs) under current and future climate regimes. This extends previous risk assessments undertaken by incorporating the influence of climate change on the hazard (TCs) into the assessment process. The output of this study is a set of peril matrices, which detail the relative change in parameters describing TC behaviour: e.g. annual mean frequency, mean maximum intensity and mean latitude of genesis. The relative changes are evaluated as the fractional change between TC behavior in current climate GCM simulations and future climate GCM simulations.

  • The Philippine archipalego is tectonically complex and seismically hazardous, yet few seismic hazard assessments have provided national coverage. This paper presents an updated probabilistic seismic hazard analysis for the nation. Active shallow crustal seismicity is modeled by faults and gridded point sources accounting for spatially variable occurrence rates. Subduction interfaces are modelled with faults of complex geometry. Intraslab seismicity is modeled by ruptures filling the slab volume. Source geometries and earthquake rates are derived from seismicity catalogs, geophysical datasets, and historic-to-paleoseismic constraints on fault slip rates. The ground motion characterization includes models designed for global use, with partial constraint by residual analysis. Shallow crustal faulting near metropolitan Manila, Davao, and Cebu dominates shaking hazard. In a few places, peak ground acceleration with 10% probability of exceedance in 50 years on rock reaches 1.0 g. The results of this study may assist in calculating the design base shear in the National Structural Code of the Philippines.

  • <div>The city of Lae is Papua New Guinea (PNG)’s second largest, and is the home of PNG’s largest port. Here, a convergence rate of ~50 mm/yr between the South Bismarck Plate and the Australian Plate is accommodated across the Ramu-Markham Fault Zone (RMFZ). The active structures of the RMFZ are relatively closely spaced to the west of Lae. However, the fault zone bifurcates immediately west of the Lae urban area, with one strand continuing to the east, and a second strand trending southeast through Lae City and connecting to the Markham Trench within the Huon Gulf. </div><div>The geomorphology of the Lae region relates to the interaction between riverine (and limited marine) deposition and erosion, and range-building over low-angle thrust faults of the RMFZ. Flights of river terraces imply repeated tectonic uplift events; dating of these terraces will constrain the timing of past earthquakes and associated recurrence intervals. Terrace riser heights are typically on the order of 3 m, indicating causative earthquake events of greater than magnitude 7. </div><div>Future work will expose the most recently active fault traces in trenches to assess single event displacements, and extend the study to the RMFZ north of Nadzab Airport. These results will inform a seismic hazard and risk assessment for Lae city and surrounding region.</div> Presented at the 2023 Australian Earthquake Engineering Society (AEES) Conference

  • Natural Hazards and Earth Systems Science