INFORMATION AND COMPUTING SCIENCES
Type of resources
Keywords
Publication year
Topics
-
The purpose of this document is to define an Emergency Management (EM) Metadata Profile Extension to the ISO 19115-1:2014/AMD 1:2018 to identify the metadata required to accurately describe EM resources. The EM Metadata Profile is designed to support the documentation and discovery of EM datasets, services, and other resources. This version of the Profile was developed to reflect extensions made to the current version of the international metadata standard: ISO 19115-1:2014/AMD 1:2018.
-
Effective mineral, energy and groundwater resource management and exploration rely on accurate geological maps. While geological maps of the surface exist and increase in resolution, maps of the subsurface are sparse, and the underpinning geological and geophysical constraints are disordered or non-existent. The Estimates of Geological and Geophysical Surfaces (EGGS) database seeks to enable robust subsurface geological mapping by establishing an ordered collection of precious geological and geophysical interpretations of the subsurface. EGGS stores the depth to geological boundaries derived from boreholes as well as interpretations of depth to magnetic top assessments, airborne electromagnetics inversions and reflection seismic profiles. Since geological interpretation is iterative, links to geophysical datasets and processing streams used to image the subsurface are stored. These metadata allow interpretations to be readily associated with the datasets from which they are derived and re-examined. The geological basis for the interpretation is also recorded. Stratigraphic consistency is maintained by linking each interpretation to the Australian Stratigraphic Units Database. As part of the Exploring for the Future program, >170 000 points were entered into the EGGS database. These points underpin construction of cover thickness models and economic fairway assessments. <b>Citation:</b> Mathews, E.J., Czarnota, K., Meixner, A.J., Bonnardot, M.-A., Curtis, C., Wilford, J., Nicoll, M.G., Wong, S.C.T., Thorose, M. and Ley-Cooper, Y., 2020. Putting all your EGGS in one basket: the Estimates of Geological and Geophysical Surfaces database. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
<p>Digital Earth Australia manages a cloud based service that makes use of open source software and open standards to deliver satellite imagery to its clients. <p>In conjunction with Frontier SI and Commonwealth Scientific and Industrial Research Organisation, Geoscience Australia’s Digital Earth Australia project has developed a cloud architecture that utilizes the Open Data Cube (ODC) to deliver Earth Observation (EO) data through Open Geospatial Consortium (OGC) API standards, interactive Jupyter notebooks and direct file access. <p>This infrastructure enables EO data to be used to make decisions by industry and government partners, and reduces the time required to deliver new EO data products. <p>To store the data, DEA utilises Amazon Web Services (AWS) Object store: Simple Storage Service (S3) to hold an archive of Cloud Optimised GeoTIFFs (COGs). <p>This data is indexed by Open Data Cube (ODC) an open source python library. DEA deploy processing, visualisation and analysis applications that make use of the indexed data. This method reduces the duplication of code and effort and creates an extensible framework for delivering data.
-
The magnetotelluric (MT) method is increasingly being applied to map tectonic architecture and mineral systems. Under the Exploring for the Future (EFTF) program, Geoscience Australia has invested significantly in the collection of new MT data. The science outputs from these data are underpinned by an open-source data analysis and visualisation software package called MTPy. MTPy started at the University of Adelaide as a means to share academic code among the MT community. Under EFTF, we have applied software engineering best practices to the code base, including adding automated documentation and unit testing, code refactoring, workshop tutorial materials and detailed installation instructions. New functionality has been developed, targeted to support EFTF-related products, and includes data analysis and visualisation. Significant development has focused on modules to work with 3D MT inversions, including capability to export to commonly used software such as Gocad and ArcGIS. This export capability has been particularly important in supporting integration of resistivity models with other EFTF datasets. The increased functionality, and improvements to code quality and usability, have directly supported the EFTF program and assisted with uptake of MTPy among the international MT community. <b>Citation:</b> Kirkby, A.L., Zhang, F., Peacock, J., Hassan, R. and Duan, J., 2020. Development of the open-source MTPy package for magnetotelluric data analysis and visualisation. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
This video demonstrates to viewers the importance and value on fit for purpose metadata, metadata standards, and metadata profiles.
-
A publicly available AGOL Dashboard that periodically updates to show the status of requests made to the Australian Exposure Information Platform (AEIP), categorised as Running, Queued and Completed (www.aeip.ga.gov.au)
-
All commercially produced hydrogen worldwide is presently stored in salt caverns. In eastern Australia, the only known thick salt accumulations are found in the Boree Salt of the Adavale Basin in central Queensland. Although the number of wells penetrating the basin is limited, salt intervals up to 555 m thick have been encountered. The Boree Salt consists predominantly of halite and is considered to be suitable for hydrogen storage. Using well data and historical 2D seismic interpretations, we have developed a 3D model of the Adavale Basin, particularly focussing on the thicker sections of the Boree Salt. Most of the salt appears to be present at depths greater than 2000 m, but shallower sections are found in the main salt body adjacent to the Warrego Fault and to the south at the Dartmouth Dome. The preliminary 3D model developed for this study has identified three main salt bodies that may be suitable for salt cavern construction and hydrogen storage. These are the only known large salt bodies in eastern Australia and therefore represent potentially strategic assets for underground hydrogen storage. There are still many unknowns, with further work and data acquisition required to fully assess the suitability of these salt bodies for hydrogen storage. Recommendations for future work are provided. <b>Citation:</b> Paterson R., Feitz A. J., Wang L., Rees S. & Keetley J., 2022. From A preliminary 3D model of the Boree Salt in the Adavale Basin, Queensland. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146935
-
<p>Iron oxide-copper-gold (IOCG) mineral systems are a desirable undercover exploration target due to their large alteration footprint and potentially high metal content. To assist in understanding the potential for IOCG mineral systems beneath cover in the Tennant Creek to Mount Isa region as part of Exploring for the Future, a predictive mineral potential assessment has been undertaken using a knowledge-based, mineral systems approach.<p>This mineral potential assessment uses a 2D, GIS-based workflow to qualitatively map four key mineral system components: (1) Sources of metals, fluids and ligands, (2) Energy to drive fluid flow, (3) Fluid flow pathways and architecture, and (4) Deposition mechanisms, such as redox or chemical gradients. For each of these key mineral system components theoretical criteria, representing important ore-forming processes, were identified and translated into mappable proxies using a wide range of input datasets. Each of these criteria are weighted and combined using an established workflow to produce the final map of IOCG potential, all of which is well documented in the accompanying IOCG Assessment Criteria Table.<p>Two assessments have been undertaken. The first is a comprehensive assessment containing all available geospatial information and is highly reliant on the level of geological knowledge. As such, it preferentially highlights mineral potential in well-understood areas, such as outcropping regions and performs less well in covered areas, where there is a greater likelihood of data gaps. The second assessment utilises only datasets which can be mapped consistently across the assessment area. As such, these are predominately based on geophysical data and are more consistent in assessing exposed and covered areas. However, far fewer criteria are included in this assessment.<p>Both assessment highlight new areas of interest in underexplored regions, of particular interest a SW-NE corridor to the East of Tennant Creek of moderate/high potential in the Barkly region. This corridor extends to an area of moderate potential in the Murphy Inlier region near the Gulf of Carpentaria on the NT/QLD border.
-
Final report on the backgrounds, collaboration structure, methods, and findings from the EIRAPSI project
-
Following the successful outcomes of the Tennant Creek-Mt Isa (TISA) mineral potential assessment (Murr et al., 2019; Skirrow et al., 2019), the methodology has been expanded to encompass the entire North Australian Craton (NAC). Like its predecessor, this assessment uses a knowledge-based, data-rich mineral systems approach to predict the potential for iron oxide-copper-gold (IOCG) mineralisation. With their high metal yield and large alteration footprint, IOCG mineral systems remain an attractive target in directing exploration efforts towards undercover regions. This mineral potential assessment uses a 2D GIS-based workflow to map four key mineral system components: (1) Sources of metals, fluids and ligands, (2) Energy to drive fluid flow, (3) Fluid flow pathways and architecture, and (4) Deposition mechanisms, such as redox or chemical gradients. For each of these key mineral system components, theoretical criteria representing important ore-forming processes were identified and translated into mappable proxies using a wide range of input datasets. Each of these criterion are weighted and combined using an established workflow to produce a models of IOCG potential. Metadata and selection rational are documented in the accompanying NAC IOCG Assessment Criteria Table. Two scenarios were modelled for this assessment. The first is a comprehensive assessment, targeting pre-Neoproterozoic mineral systems (>1500 Ma), using a combination of interpreted, geological and geophysical datasets. As geological interpretations are subjective to the geological knowledge of the interpreter, well-documented areas, such as shallow pre-Neoproterozoic basement, have a greater density of data. This increase in data density can create an inherent bias in the modelled result towards previously explored shallow terrains. The second assessment utilises only datasets which can be mapped consistently across the assessment area. As such, these are predominately based on geophysical data and are more consistent in assessing exposed and covered areas. However, far fewer criteria are included in this assessment, and observations are reflective of only the modern geological environment. Both assessments highlight existing mineral fields in WA, NT and QLD, and suggest that these regions extend under cover. Furthermore, regions not previously known for IOCG mineralisation display a high modelled potential, offering exploration prospects in previously unknown or discounted areas.