Geoscience data visualisation
Type of resources
Keywords
Publication year
Topics
-
<div>The pyrolysis-reflectance tie database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases, which combine key properties related to thermal maturity. These data are typically used as input parameters in basin analysis and petroleum systems modelling to assist with the discovery and evaluation of sediment-hosted energy resources. The programmed pyrolysis analyses and the maceral reflectance analyses undertaken using reflected light microscopy are conducted on rock samples, either as cores, cuttings or rock chips, taken from boreholes and field sites in Australian sedimentary basins. The full datasets are available in the pyrolysis, vitrinite reflectance, maceral reflectance and organoclast maturity web services. These analyses are performed by various laboratories in service and exploration companies, Australian government institutions and universities using a range of instruments.</div><div><br></div><div>These data are collated from destructive analysis reports (DARs), well completion reports (WCRs), and literature. The data are delivered in the Combined Pyrolysis and Vitrinite Reflectance web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div>
-
<div>This data package contains interpretations of airborne electromagnetic (AEM) conductivity sections in the Exploring for the Future (EFTF) program’s Eastern Resources Corridor (ERC) study area, in south eastern Australia. Conductivity sections from 3 AEM surveys were interpreted to provide a continuous interpretation across the study area – the EFTF AusAEM ERC (Ley-Cooper, 2021), the Frome Embayment TEMPEST (Costelloe et al., 2012) and the MinEx CRC Mundi (Brodie, 2021) AEM surveys. Selected lines from the Frome Embayment TEMPEST and MinEx CRC Mundi surveys were chosen for interpretation to align with the 20 km line-spaced EFTF AusAEM ERC survey (Figure 1).</div><div>The aim of this study was to interpret the AEM conductivity sections to develop a regional understanding of the near-surface stratigraphy and structural architecture. To ensure that the interpretations took into account the local geological features, the AEM conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This approach provides a near-surface fundamental regional geological framework to support more detailed investigations. </div><div>This study interpreted between the ground surface and 500 m depth along almost 30,000 line kilometres of nominally 20 km line-spaced AEM conductivity sections, across an area of approximately 550,000 km2. These interpretations delineate the geo-electrical features that correspond to major chronostratigraphic boundaries, and capture detailed stratigraphic information associated with these boundaries. These interpretations produced approximately 170,000 depth estimate points or approximately 9,100 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div>Results from these interpretations provided support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The interpretations have applications in a wide range of disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. It is anticipated that these interpretations will benefit government, industry and academia with interest in the geology of the ERC region.</div>
-
<div>The bulk rock stable isotopes database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for the stable isotopic composition of sedimentary rocks with an emphasis on calcareous rocks and minerals sampled from boreholes and field sites. The stable isotopes of carbon, oxygen, strontium, hydrogen, nitrogen, and sulfur are measured by various laboratories in service and exploration companies, Australian government institutions, and universities, using a range of instruments. Data includes the borehole or field site location, sample depth, stratigraphy, analytical methods, other relevant metadata, and the stable isotopes ratios. The carbon (<sup>13</sup>C/<sup>12</sup>C) and oxygen (<sup>18</sup>O/<sup>16</sup>O) isotope ratios of calcareous rocks are expressed in delta notation (i.e., δ<sup>13</sup>C and δ<sup>18</sup>O) in parts per mil (‰) relative to the Vienna Peedee Belemnite (VPDB) standard, with the δ<sup>18</sup>O values also reported relative to the Vienna Standard Mean Ocean Water (VSMOW) standard. Likewise, the stable isotope ratio of hydrogen (<sup> 2</sup>H/<sup> 1</sup>H) is presented in delta notation (δ<sup> 2</sup>H) in parts per mil (‰) relative to the VSMOW standard, the stable isotope ratio of nitrogen (<sup> 15</sup>N/<sup>14</sup>N) is presented in delta notation (δ<sup>15</sup>N) in parts per mil (‰) relative to the atmospheric air (AIR) standard, and the stable isotope ratio of sulfur (<sup> 34</sup>S/<sup> 32</sup>S) is presented in delta notation (δ<sup> 34</sup>S) relative to the Vienna Canyon Diablo Troilite (VCDT) standard. For carbonates, the strontium (<sup>87</sup>Sr/<sup>86</sup>Sr) isotope ratios are also provided.</div><div><br></div><div>These data are used to determine the isotopic compositions of sedimentary rock with emphasis on the carbonate within rocks, either as minerals, the mineral matrix or cements. The results for the carbonate rocks are used to determine paleotemperature, paleoenvironment and paleoclimate, and establish regional- and global-scale stratigraphic correlations. These data are collated from Geoscience Australia records, destructive analysis reports (DARs), well completion reports (WCRs), and literature. The stable isotope data for sedimentary rocks are delivered in the Stable Isotopes of Carbonates web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div>
-
<div>The fluid inclusion stratigraphy database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for Fluid Inclusion Stratigraphy (FIS) analyses performed by FIT, a Schlumberger Company (and predecessors), on fluid inclusions in rock samples taken from boreholes. Data includes the borehole location, sample depth, stratigraphy, analytical methods and other relevant metadata, as well as the mass spectrometry results presented as atomic mass units (amu) from 2 to 180 in parts per million (ppm) electron volts.</div><div> Fluid inclusions (FI) are microscopic samples of fluids trapped within minerals in the rock matrix and cementation phases. Hence, these FIS data record the bulk volatile chemistry of the fluid inclusions (i.e., water, gas, and/or oil) present in the rock sample and determine the relative abundance of the trapped compounds (e.g., in amu order, hydrogen, helium, methane, ethane, carbon dioxide, higher molecular weight aliphatic and aromatic hydrocarbons, and heterocyclic compounds containing nitrogen, oxygen or sulfur). The FI composition can be used to identify the presence of organic- (i.e., biogenic or thermogenic) and inorganic-sourced gases. These data provide information about fluid preservation, migration pathways and are used to evaluate the potential for hydrocarbon (i.e. dry gas, wet gas, oil) and non-hydrocarbon (e.g., hydrogen, helium) resources in a basin. These data are collated from Geoscience Australia records, destructive analysis reports (DARs) and well completion reports (WCRs), with the results being delivered in the Fluid Inclusion Stratigraphy (FIS) web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div>
-
<div>The 2024 Critical Minerals in Ores (CMiO) Database factsheet contains information about the purpose of the CMiO, provides links to access the CMiO, two case studies on critical mineral abundance in deposits and a link to the user guide and submission template to provide data to the CMiO. This factsheet is an is an updated version of the Kelley 2020 USGS factsheet (https://doi.org/10.3133/fs20203035). The CMiO was produced through the Critical Minerals Mapping Initiative (CMMI), a collaboration between Geoscience Australia (GA), the Geological Survey of Canada (GSC) and the United States Geological Survey (USGS) in 2021 and is periodically updated. Note: A copy of the updated factsheet will not be available until the end of 2024.
-
<div>The active seismic and passive seismic database contains metadata about Australian land seismic surveys acquired by Geoscience Australia and its collaborative partners. </div><div>For active seismic this is onshore surveys with metadata including survey header data, line location and positional information, and the energy source type and parameters used to acquire the seismic line data. For passive seismic this metadata includes information about station name and location, start and end dates, operators and instruments. Each also contains a field that contains links to the published data. </div><div><br></div><div>The active and passive seismic database is a subset of tables within the larger Geophysical Surveys and Datasets Database and development of these databases was completed as part of the second phase of the Exploring for the Future (EFTF) program (2020-2024). The resource is accessible via the Geoscience Australia Portal (https://portal.ga.gov.au/), under 'Geophysics'. Use 'active seismic' or 'passive seismic' as search terms. </div><div><br></div>
-
<div>The Gas Chromatography-Mass Spectrometry (GC-MS) biomarker database table contains publicly available results from Geoscience Australia's organic geochemistry (ORGCHEM) schema and supporting oracle databases for the molecular (biomarker) compositions of source rock extracts and petroleum liquids (e.g., condensate, crude oil, bitumen) sampled from boreholes and field sites. These analyses are undertaken by various laboratories in service and exploration companies, Australian government institutions and universities using either gas chromatography-mass spectrometry (GC-MS) or gas chromatography-mass spectrometry-mass spectrometry (GC-MS-MS). Data includes the borehole or field site location, sample depth, shows and tests, stratigraphy, analytical methods, other relevant metadata, and the molecular composition of aliphatic hydrocarbons, aromatic hydrocarbons and heterocyclic compounds, which contain either nitrogen, oxygen or sulfur.</div><div><br></div><div>These data provide information about the molecular composition of the source rock and its generated petroleum, enabling the determination of the type of organic matter and depositional environment of the source rock and its thermal maturity. Interpretation of these data enable the determination of oil-source and oil-oil correlations, migration pathways, and any secondary alteration of the generated fluids. This information is useful for mapping total petroleum systems, and the assessment of sediment-hosted resources. Some data are generated in Geoscience Australia’s laboratory and released in Geoscience Australia records. Data are also collated from destructive analysis reports (DARs), well completion reports (WCRs), and literature. The biomarker data for crude oils and source rocks are delivered in the Petroleum and Rock Composition – Biomarker web services on the Geoscience Australia Data Discovery Portal at https://portal.ga.gov.au which will be periodically updated.</div>
-
<div>In Australia, wide-spread sedimentary basin and regolith cover presents a key challenge to explorers, environmental managers and decision-makers, as it obscures underlying rocks of interest. To address this, a national coverage of airborne electromagnetics (AEM) with a 20 km line-spacing is being acquired. This survey is acquired as part of the Exploring for the Future program and in collaboration with state and territory geological surveys. This survey presents an opportunity for regional geological interpretations on the modelled AEM data, helping constrain the characteristics of the near-surface geology beneath the abundant cover, to a depth of up to ~500 m.</div><div> The AEM conductivity sections were used to delineate key chronostratigraphic boundaries, e.g. the bases of geological eras, and provide a first-pass interpretation of the subsurface geology. The interpretation was conducted with a high level of data integration with boreholes, potential fields geophysics, seismic, surface geology maps and solid geology maps. This approach led to the construction of well-informed geological interpretations and provided a platform for ongoing quality assurance and quality control of the interpretations and supporting datasets. These interpretations are delivered across various platforms in multidimensional non-proprietary open formats, and have been formatted for direct upload to Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository of multidisciplinary subsurface depth estimates.</div><div> These interpretations have resulted in significant advancements in our understanding of Australia’s near-surface geoscience, by revealing valuable information about the thickness and composition of the extensive cover, as well as the composition, structure and distribution of underlying rocks. Current interpretation coverage is ~110,000 line kilometres of AEM conductivity sections, or an area >2,000,000 km2, similar to the area of Greenland or Saudi Arabia. This ongoing work has led to the production of almost 600,000 depth estimate points, each attributed with interpretation-specific metadata. Three-dimensional line work and over 300,000 points are currently available for visualisation, integration and download through the GA Portal, or for download through GA’s eCat electronic catalogue. </div><div> These interpretations demonstrate the benefits of acquiring broadly-spaced AEM surveys. Interpretations derived from these surveys are important in supporting regional environmental management, resource exploration, hazard mapping, and stratigraphic unit certainty quantification. Delivered as precompetitive data, these interpretations provide users in academia, government and industry with a multidisciplinary tool for a wide range of investigations, and as a basis for further geoscientific studies.</div> Abstract submitted and presented at 2023 Australian Earth Science Convention (AESC), Perth WA (https://2023.aegc.com.au/)
-
<div>GeoInsight was an 18-month pilot project developed in the latter part of Geoscience Australia’s Exploring for the Future Program (2016–2024). The aim of this pilot was to develop a new approach to communicating geological information to non-technical audiences, that is, non-geoscience professionals. The pilot was developed using a human-centred design approach in which user needs were forefront considerations. Interviews and testing found that users wanted a simple and fast, plain-language experience which provided basic information and provided pathways for further research. GeoInsight’s vision is to be an accessible experience that curates information and data from across the Geoscience Australia ecosystem, helping users make decisions and refine their research approach, quickly and confidently.</div><div><br></div><div>Geoscience Australia hosts a wealth of geoscientific data, and the quantity of data available in the geosciences is expanding rapidly. This requires newly developed applications such as the GeoInsight pilot to be adaptable and malleable to changes and updates within this data. As such, utilising the existing Oracle databases, web service publication and platform development workflows currently employed within Geoscience Australia (GA) were optimal choices for data delivery for the GeoInsight pilot. This record is intended to give an overview of the how and why of the technical infrastructure of this project. It aims to summarise how the underlying databases were used for both existing and new data, as well as development of web services to supply the data to the pilot application. </div>
-
<div>This guide and template details data requirements for submission of mineral deposit geochemical data to the Critical Minerals in Ores (CMiO) database, hosted by Geoscience Australia, in partnership with the United States Geological Survey and the Geological Survey of Canada. The CMiO database is designed to capture multielement geochemical data from a wide variety of critical mineral-bearing deposits around the world. Samples included within this database must be well-characterized and come from localities that have been sufficiently studied to have a reasonable constraint on their deposit type and environment of formation. As such, only samples analysed by modern geochemical methods, and with certain minimum metadata attribution, can be accepted. Data that is submitted to the CMiO database will also be published via the Geoscience Australia Portal (portal.ga.gov.au) and Critical Minerals Mapping Initiative Portal (https://portal.ga.gov.au/persona/cmmi). </div><div><br></div>