From 1 - 10 / 65
  • Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. As part of Exploring for the Future (EFTF) program with contributions from the Geological Survey of Queensland, long-period magnetotelluric (MT) data for the Australian Lithospheric Architecture Magnetotelluric Project (AusLAMP) were collected using Geoscience Australia's LEMI-424 instruments on a half-degree grid across Queensland from April 2021 to November 2022. This survey aims to map the electrical resistivity structures in the region. These results provide additional information about the lithospheric architecture and geodynamic processes, as well as valuable precompetitive data for resource exploration in this region. This data release package includes processed MT data, a preferred 3D resistivity model projected to GDA94 MGA Zone 54 and associated information for this project. The processed MT data were stored in EDI format, which is the industry standard format defined by the Society of Exploration Geophysicists. The preferred 3D resistivity model was derived from previous EFTF AusLAMP data acquired from 2016-2019 and recently acquired AusLAMP data in Queensland. The model is in SGrid format and geo-referenced TIFF format.

  • <div>The production of rare earth elements is critical for the transition to a low carbon economy. Carbonatites (&gt;50% carbonate minerals) are one of the most significant sources of rare earth elements (REEs), both domestically within Australia, as well as globally. Given the strategic importance of critical minerals, including REEs, for the Australian national economy, a mineral potential assessment has been undertaken to evaluate the prospectivity for carbonatite-related REE (CREE) mineralisation in Australia. CREE deposits form as the result of lithospheric- to deposit-scale processes that are spatially and temporally coincident.</div><div><br></div><div>Building on previous research into the formation of carbonatites and their related REE mineralisation, a mineral system model has been developed that incorporates four components: (1) source of metals, fluids, and ligands, (2) energy sources and fluid flow drivers, (3) fluid flow pathways and lithospheric architecture, and (4) ore deposition. This study demonstrates how national-scale datasets and a mineral systems-based approach can be used to map the mineral potential for CREE mineral systems in Australia.</div><div><br></div><div>Using statistical analysis to guide the feature engineering and map weightings, a weighted index overlay method has been used to generate national-scale mineral potential maps that reduce the exploration search space for CREE mineral systems by up to ∼90%. In addition to highlighting regions with known carbonatites and CREE mineralisation, the mineral potential assessment also indicates high potential in parts of Australia that have no previously identified carbonatites or CREE deposits.</div><div><br></div><div><b>Citation: </b>Ford, A., Huston, D., Cloutier, J., Doublier, M., Schofield, A., Cheng, Y., and Beyer, E., 2023. A national-scale mineral potential assessment for carbonatite-related rare earth element mineral systems in Australia, <i>Ore Geology Reviews</i>, V. 161, 105658. https://doi.org/10.1016/j.oregeorev.2023.105658</div>

  • <div>Around the world the Earth's crust is blanketed to various extents by sedimentary cover. For continental regions, knowledge of the distribution and thickness of sediments is crucial for a wide range of applications including seismic hazard, resource potential, and our ability to constrain the deeper crustal geology. Excellent constraints on the sedimentary thickness can be obtained from borehole drilling or active seismic surveys. However, these approaches are expensive and impractical in remote continental interiors such as central Australia. </div><div><br></div><div>Recently, a method for estimating the sedimentary thickness using passive seismic data, the collection of which is relatively simple and low-cost, was developed and applied to seismic stations in South Australia. This method uses receiver functions, specifically the time delay of the \P{}-to-\S{} converted phase generated at the sediment-basement interface, relative to the direct-P arrival, to generate a first order estimate of the thickness of sedimentary cover. In this work we expand the analysis to the vast array of over 1500 seismic stations across Australia, covering an entire continent and numerous sedimentary basins that span the entire range from Precambrian to present-day. We compare with an established yet separate method to estimate the sedimentary thickness, which utilises the autocorrelation of the radial receiver functions to ascertain the two-way travel-time of shear waves reverberating in a sedimentary layer.</div><div><br></div><div>Across the Australian continent the new results clearly match the broad pattern of expected sedimentation based on the various geological provinces. Furthermore we are able to delineate the boundaries of many sedimentary features, such as the Eucla and Murray Basins, which are Cenozoic, and the boundary between the Karumba Basin and the mineral rich Mount Isa Province. The signal is found to diminish for older Proterozoic basins, likely due to compaction and metamorphism of the sediments over time. Finally, a comparison with measurements of sedimentary thickness from local boreholes allows for a straightforward predictive relationship between the delay time and the cover thickness to be defined. This offers future widespread potential, providing a simple and cheap way to characterise the sedimentary thickness in under-explored areas from passive seismic data. </div><div><br></div><div>This study and some of the data used are funded and supported by the Australian Government's Exploring for the Future program led by Geoscience Australia.</div> <b>Citation:</b> Augustin Marignier, Caroline M Eakin, Babak Hejrani, Shubham Agrawal, Rakib Hassan, Sediment thickness across Australia from passive seismic methods, <i>Geophysical Journal International</i>, Volume 237, Issue 2, May 2024, Pages 849–861, <a href="https://doi.org/10.1093/gji/ggae070">https://doi.org/10.1093/gji/ggae070</a>

  • This Record documents the efforts of Mineral Resources Tasmania (MRT) and Geoscience Australia (GA) in compiling a geochronology (age) compilation for Tasmania, describing both the dataset itself and the process by which it is incorporated into the continental-scale Isotopic Atlas of Australia. The Isotopic Atlas draws together age and isotopic data from across the country and provides visualisations and tools to enable non-experts to extract maximum value from these datasets. Data is added to the Isotopic Atlas in a staged approach with priorities determined by GA- and partner-driven focus regions and research questions. This Tasmanian compilation represents the second in a series of compilation publications (Records and Datasets) for the southern states of Australia, which are a foundation for the second phase of the Exploring for the Future initiative over 2020–2024. It was compiled primarily from data, reports, journal articles and theses provided to GA by MRT. The most current data can be accessed and downloaded from GA’s <a href=https://portal.ga.gov.au/persona/geochronology>EFTF Geochronology and Isotopes Data Portal</a> and MRT’s <a href=https://www.mrt.tas.gov.au/mrt_maps/app/list/map>LISTmap.</a>

  • <div>Lithospheric and crustal architecture — the framework of major tectonic blocks, terranes and their boundaries — represents a fundamental first-order control on major geological systems, including the location of world-class mineral camps. Traditionally, lithospheric and crustal architecture are constrained using predominantly geophysical methods. However, Champion and Cassidy (2007) pioneered the use of regional Sm–Nd isotopic data from felsic igneous rocks to produce isotopic contour maps of the Yilgarn Craton, demonstrating the effectiveness of ‘isotopic mapping’, and the potential to map ‘time-constrained’ crustal architecture. Mole et al. (2013) demonstrated the association between lithospheric architecture and mineral systems, highlighting the potential of isotopic mapping as a greenfield area selection tool. Additional work, using Lu-Hf isotopes (Mole et al., 2014), demonstrated that the technique could constrain a range of temporal events via ‘time-slice mapping’, explaining how Ni-Cu-PGE mineralized komatiite systems migrated with the evolving lithospheric boundary of the Yilgarn Craton from 2.9 to 2.7 Ga. Similar studies have since been conducted in West Africa (Parra-Avila et al., 2018), Tibet (Hou et al., 2015), and Canada (Bjorkman, 2017; Mole et al., 2021; 2022). This work continues in Geoscience Australia’s $225 million Exploring for the Future program (2016-present). Isotopic mapping, which forms an integral part of a combined geology-geophysics-geochemistry approach, is currently being applied across southeast Australia, covering the eastern Gawler Craton, Delamerian Orogen, and western Lachlan Orogen, encompassing more than 3 Gyrs of Earth history with demonstrable potential for large mineral systems.</div><div> <b>Reference(s):</b></div><div> Bjorkman, K.E., 2017. 4D crust-mantle evolution of the Western Superior Craton: Implications for Archean granite-greenstone petrogenesis and geodynamics. University of Western Australia, PhD Thesis, 134 pp.</div><div> Champion, D.C. and Cassidy, K.F., 2007. An overview of the Yilgarn Craton and its crustal evolution. In: F.P. Bierlein and C.M. Knox-Robinson (Editors), Proceedings of Geoconferences (WA) Inc. Kalgoorlie '07 Conference. Geoscience Australia Record 2007/14, Kalgoorlie, Western Australia, pp. 8-13.</div><div> Hou, Z., Duan, L., Lu, Y., Zheng, Y., Zhu, D., Yang, Z., Yang, Z., Wang, B., Pei, Y., Zhao, Z. and McCuaig, T.C., 2015. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen. Economic Geology, 110(6): 1541-1575.</div><div> Mole, D.R., Fiorentini, M.L., Cassidy, K.F., Kirkland, C.L., Thebaud, N., McCuaig, T.C., Doublier, M.P., Duuring, P., Romano, S.S., Maas, R., Belousova, E.A., Barnes, S.J. and Miller, J., 2013. Crustal evolution, intra-cratonic architecture and the metallogeny of an Archaean craton. Geological Society, London, Special Publications, 393: pp. 23-80.</div><div> Mole, D.R., Fiorentini, M.L., Thebaud, N., Cassidy, K.F., McCuaig, T.C., Kirkland, C.L., Romano, S.S., Doublier, M.P., Belousova, E.A., Barnes, S.J. and Miller, J., 2014. Archean komatiite volcanism controlled by the evolution of early continents. Proceedings of the National Academy of Sciences, 111(28): 10083-10088.</div><div> Mole, D.R., Thurston, P.C., Marsh, J.H., Stern, R.A., Ayer, J.A., Martin, L.A.J. and Lu, Y., 2021. The formation of Neoarchean continental crust in the south-east Superior Craton by two distinct geodynamic processes. Precambrian Research, 356: 106104.</div><div> Mole, D.R., Frieman, B.M., Thurston, P.C., Marsh, J.H., Jørgensen, T.R.C., Stern, R.A., Martin, L.A.J., Lu, Y.J. and Gibson, H.L., 2022. Crustal architecture of the south-east Superior Craton and controls on mineral systems. Ore Geology Reviews, 148: 105017.</div><div> Parra-Avila, L.A., Belousova, E., Fiorentini, M.L., Eglinger, A., Block, S. and Miller, J., 2018. Zircon Hf and O-isotope constraints on the evolution of the Paleoproterozoic Baoulé-Mossi domain of the southern West African Craton. Precambrian Research, 306: 174-188.</div><div> This Abstract was submitted/presented to the Target 2023 Conference 28 July (https://6ias.org/target2023/)

  • <div>Near-surface magnetizations are ubiquitous across many areas of Australia and complicate reliable estimation of depth to deeper magnetizations. We have selected four test areas in which we use equivalent source dipoles to represent and quantify the near-surface magnetizations. We present a synthetic modelling study that demonstrates that field variations from the near-surface magnetizations substantially degrade estimation of depth to a magnetization 500 metres below the modelled sensor elevation and that these problems persist even for anomalies with significantly higher amplitudes. However, preferential attenuation of the fields from near surface magnetizations by upward continuation proved quite effective in improving estimation of depth to those magnetizations.</div> This Abstract was submitted/presented at the 2023 Australasian Exploration Geoscience Conference (AEGC) 13-18 March (https://2023.aegc.com.au/)

  • Long-range, active-source airborne electromagnetic (AEM) systems for near-surface imaging fall into two categories: helicopter borne or fixed-wing aircraft borne. A multitude of factors such as flying height, transmitter loop area and current, source waveforms, aerodynamic stability and data stacking times contribute to the geological resolvability of the subsurface. A comprehensive comparison of the relative merits of each system considering all such factors is difficult, but test flights over known subsurface geology with downhole induction logs are extremely useful for resolution studies. Further, given the non-linear nature of the electromagnetic inverse problem, handling transmitter-receiver geometries in fixed-wing aircraft is especially challenging. As a consequence of this nonlinearity, inspecting the closeness of downhole conductivities to deterministic inversion results is not sufficient for studying resolvability. A more comprehensive picture is provided by examining the width of the depth-wise Bayesian posterior conductivity distributions for each kind of system. For this purpose, probabilistic inversions of data must be carried out -- with acquisition over the same geology, survey noise levels must be measured, and the same prior probabilities on conductivity must be used. With both synthetic models as well as real data from over the Menindee calibration range in New South Wales, Australia, we shed new light on the matter of AEM inverse model resolution. Specifically, we use a novel Bayesian inversion scheme which handles fixed-wing geometry attributes as generic nuisance parameters during Markov chain sampling. Our findings have useful implications in AEM system selection, as well as in the design of better deterministic AEM inversion algorithms. <b>Citation:</b> Anandaroop Ray, Yusen Ley-Cooper, Ross C Brodie, Richard Taylor, Neil Symington, Negin F Moghaddam, An information theoretic Bayesian uncertainty analysis of AEM systems over Menindee Lake, Australia, Geophysical Journal International, Volume 235, Issue 2, November 2023, Pages 1888–1911, <a href="https://doi.org/10.1093/gji/ggad337">https://doi.org/10.1093/gji/ggad337</a>

  • <div>Alkaline and related rocks are a relatively rare class of igneous rocks worldwide. Alkaline rocks encompass a wide range of rock types and are mineralogically and geochemically diverse. They are typically though to have been derived by generally small to very small degrees of partial melting of a wide range of mantle compositions. As such these rocks have the potential to convey considerable information on the evolution of the Earth’s mantle (asthenosphere and lithosphere), particularly the role of metasomatism which may have been important in their generation or to which such rocks may themselves have contributed. Such rocks, by their unique compositions and or enriched source protoliths, also have considerable metallogenic potential, e.g., diamonds, Th, U, Zr, Hf, Nb, Ta, REEs. It is evident that the geographic occurrences of many of these rock types are also important, and may relate to presence of old cratons, craton margins or major lithospheric breaks. Finally, many alkaline rocks also carry with them mantle xenoliths providing a snapshot of the lithospheric mantle composition at the time of their emplacement.</div><div><br></div><div>Accordingly, although Alkaline and related rocks comprise only a volumetrically minor component of the geology of Australia, they are of considerable importance to studies of lithospheric composition, evolution and architecture and to helping constrain the temporal evolution of the lithosphere, as well as more directly to metallogenesis and mineralisation.</div><div><br></div><div>This GIS product is part of an ongoing compilation of the distribution and geology of alkaline and related rocks throughout Australia. The accompanying report document alkaline and related rocks of Cenozoic age.</div>

  • <div>Geoscience Australia’s Exploring for the Future (EFTF) program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div><div><br></div><div>This record contains geological notes on layered geology interpretation of twenty-nine 1:250 000 Sheet areas in eastern Queensland. The geology maps generated as part of this work were not released as a separate product but incorporated into the national layered geology product of Sanchez et al. (2024). There are five layers interpreted; pre-Neoproterozoic, Neoproterozoic, Paleozoic, Mesozoic and Cenozoic. Preparation of these layers involved figuratively peeling off successively older rocks and identifying and outlining the rocks thereby revealed. The notes provide comments on the rocks comprising each layer, and explain how the identity of the revealed rocks was arrived at where this is not obvious. The Cenozoic time slice was extracted from the 1:1 000 000 scale outcrop geology (Raymond et al., 2012) after removing the surficial deposits and without further interpretation.&nbsp;</div>

  • <div><strong>Output Type:</strong> Exploring for the Future Extended Abstract</div><div><br></div><div><strong>Short Abstract: </strong>Knowledge of lithospheric structure is crucial information for resources exploration and deepening understanding of natural hazards. Available tomographic models of the Australian lithosphere often agree on large scale features, but in detail significant differences remain. Consequently, there is a growing need for a fully verifiable lithospheric model of Australia. Geoscience Australia has committed to develop such a model and share all results and datasets involved in model building. Here we present the first results of a full waveform inversion tomography model of Australia lithosphere down to a period of 70 s potentially able to resolve half wavelengths across continental Australia. Our model is based on seismic records from the National Seismic Network and legacy datasets with the addition of data from the currently deployed continental-scale 2° AusArray survey, which includes stations installed in previously inaccessible areas. We start with 193 earthquakes (moment magnitude (Mw) 6.2–7.5) and add 165 more earthquakes (Mw &gt;5.0) once the model progressed to a period of 70 s. Model resolution will improve over time as more data become available and more time is allowed for computation and quality control. As further iterations continue, and the inversion frequency range expands to higher frequencies, body waves can be exploited in full to constrain the model in detail and provide enough information for all components of the wavefield, building high-resolution tomographic models at a period of 40 s and below. Our model reveals previously observed first order features while revealing finer detail across much of continental Australia.</div><div><br></div><div><strong>Citation: </strong>Holzschuh, J., Gorbatov, A., Hejrani, B., Boehm, C. &amp; Hassan, R., 2024. Tomographic model of the Australian region from seismic full waveform inversion. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://doi.org/10.26186/149404</div>