From 1 - 10 / 23
  • <div>Airborne electromagnetics surveys are at the forefront of addressing the challenge of exploration undercover. They have been essential in the regional mapping programmes to build Australia's resource potential inventory and provide information about the subsurface. In collaboration with state and territory geological surveys, Geoscience Australia (GA) leads a national initiative to acquire AEM data across Australia at 20 km line spacing, as a component of the Australian government Exploring for The Future (EFTF) program. Regional models of subsurface electrical conductivity show new undercover geological features that could host critical mineral deposits and groundwater resources. The models enable us to map potential alteration and structural zones and support environmental and land management studies. Several features observed in the AEM models have also provided insights into possible salt distribution analysed for its hydrogen storage potential. The AusAEM programme is rapidly covering areas with regional AEM transects at a scale never previously attempted. The programme's success leans on the high-resolution, non-invasive nature of the method and its ability to derive subsurface electrical conductivity in three dimensions – made possible by GA's implementation of modern high-performance computing algorithms. The programme is increasingly acquiring more AEM data, processing it, and working towards full national coverage.</div> This Abstract was submitted/presented to the 2023 Australian Exploration Geoscience Conference 13-18 Mar (https://2023.aegc.com.au/)

  • The Exploring for the Future program Showcase 2023 was held on 15-17 August 2023. Day 1 - 15th August talks included: Resourcing net zero – Dr Andrew Heap Our Geoscience Journey – Dr Karol Czarnota You can access the recording of the talks from YouTube here: <a href="https://youtu.be/uWMZBg4IK3g">2023 Showcase Day 1</a>

  • Heavy minerals (HMs) have been used successfully around the world in energy and mineral exploration, yet in Australia no public domain database or maps exist that document the background HM assemblages or distributions. Here, we describe a project that delivers the world’s first continental-scale HM maps. We applied automated mineralogical identification and quantification of the HMs contained in floodplain sediments from large catchments covering most of Australia. The composition of the sediments reflects the dominant rock types in each catchment, with the generally resistant HMs largely preserving the mineralogical fingerprint of their host protoliths through the weathering–transport–deposition cycle. Underpinning this vision was a pilot project, based on 10 samples from the national sediment sample archive, which in 2020 demonstrated the feasibility of a larger, national-scale project. Two tranches of the subsequent national HM dataset, one focusing on a 965,000 km2 region centred on Broken Hill in southeastern Australia, the other focusing on a 950,000 km2 area in northern Queensland and Northern Territory, were released in 2022. In those releases, over 47 million mineral grains were analysed in 411 samples, identifying over 150 HM species. We created a bespoke, cloud-based mineral network analysis (MNA) tool to visualize, explore and discover relationships between HMs as well as between them and geological settings or mineral deposits. We envisage that the Heavy Mineral Map of Australia and MNA tool, when released publicly by the end of 2023, will contribute significantly to mineral prospectivity analysis and modelling, particularly for technology critical elements and their host minerals <b>Citation:</b> Caritat P. de, Walker A.T., Bastrakov E. & McInnes B.I.A., 2023. From The Heavy Mineral Map of Australia: vision, implementation and progress. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/148678

  • <div>We present the first national-scale lead (Pb) isotope maps of Australia based on surface regolith for five isotope ratios, <sup>206</sup>Pb/<sup>204</sup>Pb, <sup>207</sup>Pb/<sup>204</sup>Pb, <sup>208</sup>Pb/<sup>204</sup>Pb, <sup>207</sup>Pb/<sup>206</sup>Pb, and <sup>208</sup>Pb/<sup>206</sup>Pb, determined by single collector Sector Field-Inductively Coupled Plasma-Mass Spectrometry after an Ammonium Acetate leach followed by Aqua Regia digestion. The dataset is underpinned principally by the National Geochemical Survey of Australia (NGSA) archived floodplain sediment samples. We analysed 1219 ‘top coarse’ (0-10 cm depth, &lt;2 mm grain size) samples, collected near the outlet of 1098 large catchments covering 5.647 million km2 (~75% of Australia). This paper focusses on the Aqua Regia dataset. The samples consist of mixtures of the dominant soils and rocks weathering in their respective catchments (and possibly those upstream) and are therefore assumed to form a reasonable representation of the average isotopic signature of those catchments. This assumption was tested in one of the NGSA catchments, within which 12 similar ‘top coarse’ samples were also taken; results show that the Pb isotope ratios of the NGSA catchment outlet sediment sample are close to the average of the 12 sub-catchment, upstream samples. National minimum, median and maximum values reported for <sup>206</sup>Pb/<sup>204</sup>Pb were 15.558, 18.844, 30.635; for <sup>207</sup>Pb/<sup>204</sup>Pb 14.358, 15.687, 18.012; for <sup>208</sup>Pb/<sup>204</sup>Pb 33.558, 38.989, 48.873; for <sup>207</sup>Pb/<sup>206</sup>Pb 0.5880, 0.8318, 0.9847; and for <sup>208</sup>Pb/<sup>206</sup>Pb 1.4149, 2.0665, 2.3002, respectively. The new dataset was compared with published bedrock and ore Pb isotope data, and was found to dependably represent crustal elements of various ages from Archean to Phanerozoic. This suggests that floodplain sediment samples are a suitable proxy for basement and basin geology at this scale, despite various degrees of transport, mixing, and weathering experienced in the regolith environment, locally over protracted periods of time. An example of atmospheric Pb contamination around Port Pirie, South Australia, where a Pb smelter has operated since the 1890s, is shown to illustrate potential environmental applications of this new dataset. Other applications may include elucidating detail of Australian crustal evolution and mineralisation-related investigations.&nbsp;</div> <b>Citation:</b> Desem, C. U., de Caritat, P., Woodhead, J., Maas, R., and Carr, G.: A regolith lead isoscape of Australia, <o>Earth Syst. Sci. Data</i>, 16, 1383–1393, https://doi.org/10.5194/essd-16-1383-2024, 2024.

  • Demand for critical minerals, vital for advanced technologies, is increasing. This study shows that Australia’s richly endowed geological provinces contain numerous undeveloped or abandoned mineral occurrences that could potentially lead to new economic resources. Three study areas were assessed for critical mineral occurrences through database interrogation and literature review, namely the Barkly-Isa-Georgetown (BIG), Darling-Curnamona-Delamerian (DCD) and Officer-Musgrave (OM) project areas. The study found approximately 20,000 mineral occurrences across the three areas, with just over half occurring in the DCD region. Critical minerals were recognised in ~10% of all occurrences in BIG, ~10% in DCD and 70% in OM. Gold and base metal occurrences comprise 48% (OM), 81% (DCD) and 82% (BIG) of all occurrences in the study areas, with these metals in the DCD and BIG historically and presently important. This large-scale analysis and literature review of Australia’s forgotten mineral discoveries identifies potential new sources of critical minerals and, with the addition of mineralisation style to the data, contributes to predictive exploration methodology that will further unlock the nation’s critical mineral potential. These data are available through the Exploring for the Future portal (https://portal.ga.gov.au/persona/eftf). <b>Citation:</b> Kucka C., Senior A. & Britt A., 2022. Mineral Occurences: Forgotten discoveries providing new leads for mineral supply. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146983

  • Over 900 Australian mineral deposits, location and age data, combined with deposit classifications, have been used to assess temporal and spatial patterns of mineral deposits associated with convergent margins and allow assessment of the potential of poorly exposed or undercover mineral provinces and identification of prospective tracts within known mineral provinces. Here we present results of this analysis for the Eastern Goldfields Superterrane and the Tasman Element, which illustrate end-members of the spectrum of convergent margin metallogenic provinces. Combining our Australian synthesis with global data suggest that after ~3000 Ma these provinces are characterised by a reasonably consistent temporal pattern of deposit formation, termed the convergent margin metallogenic cycle (CMMC): volcanic-hosted massive sulfide – calc-alkalic porphyry copper – komatiite-associated nickel sulfide → orogenic gold → alkalic porphyry copper – granite-related rare metal (Sn, W and Mo) – pegmatite. Between ca 3000 Ma and ca 800 Ma, virtually all provinces are characterised by a single CMMC, but after ca 800 Ma, provinces mostly have multiple CMMCs. We interpret this change in metallogeny to reflect secular changes in tectonic style, with single-CMMC provinces associated with warm, shallow break-off subduction, and multiple-CMMC provinces associated with modern-style cold, deep break-off subduction. These temporal and spatial patterns can be used to infer potential for mineralisation outside well-established metallogenic tracts. <b>Citation:</b> Huston D. L., Doublier M. P., Eglington B., Pehrsson S., Mercier-Langevin P. & Piercey S., 2022. Convergent margin metallogenic cycling in the Eastern Goldfields Superterrane and Tasman Element. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/147037

  • Improvements in discovery and management of minerals, energy and groundwater resources are spurred along by advancements in surface and subsurface imaging of the Earth. Over the last half decade Australia has led the world in the collection of regionally extensive airborne electromagnetic (AEM) data coverage, which provides new constraints on subsurface conductivity structure. Inferring geology and hydrology from conductivity is non-trivial as the conductivity response of earth materials is non-unique, but careful calibration and interpretation does provide significant insights into the subsurface. To date utility of this new data is limited by its spatial extent. The AusAEM survey provides conductivity constraints every 12.5 m along flight lines with no constraints across vast areas between flight lines spaced 20 km apart. Here we provide a means to infer the conductivity between flight lines as an interim measure before infill surveys can be undertaken. We use a gradient boosted tree machine learning algorithm to discover relationships between AEM conductivity models across northern Australia and other national data coverages for three depth ranges: 0–0.5 m, 9–11 m and 22–27 m. The predictive power of our models decreases with depth but they are nevertheless consistent with our knowledge of geological, landscape evolution and climatic processes and an improvement on standard interpolation methods such as kriging. Our models provide a novel complementary methodology to gridding/interpolating from AEM conductivity alone for use by the mining, energy and natural resource management sectors. <b>Citation: </b>Wilford J., Ley-Cooper Y., Basak S., & Czarnota K., 2022. High resolution conductivity mapping using regional AEM survey and machine learning. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146380.

  • The High Quality Geophysical Analysis (HiQGA) package is a fully-featured, Julia-language based open source framework for geophysical forward modelling, Bayesian inference, and deterministic imaging. A primary focus of the code is production inversion of airborne electromagnetic (AEM) data from a variety of acquisition systems. Adding custom AEM systems is simple using Julia’s multiple dispatch feature. For probabilistic spatial inference from geophysical data, only a misfit function needs to be supplied to the inference engine. For deterministic inversion, a linearisation of the forward operator (i.e., Jacobian) is also required. HiQGA is natively parallel, and inversions from a full day of production AEM acquisition can be inverted on thousands of CPUs within a few hours. This allows for quick assessment of the quality of the acquisition, and provides geological interpreters preliminary subsurface images of EM conductivity together with associated uncertainties. HiQGA inference is generic by design – allowing for the analysis of diverse geophysical data. Surface magnetic resonance (SMR) geophysics for subsurface water-content estimation is available as a HiQGA plugin through the SMRPInversion (SMR probabilistic inversion) wrapper. The results from AEM and/or SMR inversions are used to create images of the subsurface, which lead to the creation of geological models for a range of applications. These applications range from natural resource exploration to its management and conservation.

  • The discovery of strategically located salt structures, which meet the requirements for geological storage of hydrogen, is crucial to meeting Australia’s ambitions to become a major hydrogen producer, user and exporter. The use of the AusAEM airborne electromagnetic (AEM) survey’s conductivity sections, integrated with multidisciplinary geoscientific datasets, provides an excellent tool for investigating the near-surface effects of salt-related structures, and contributes to assessment of their potential for underground geological hydrogen storage. Currently known salt in the Canning Basin includes the Mallowa and Minjoo salt units. The Mallowa Salt is 600-800 m thick over an area of 150 × 200 km, where it lies within the depth range prospective for hydrogen storage (500-1800 m below surface), whereas the underlying Minjoo Salt is generally less than 100 m thick within its much smaller prospective depth zone. The modelled AEM sections penetrate to ~500 m from the surface, however, the salt rarely reaches this level. We therefore investigate the shallow stratigraphy of the AEM sections for evidence of the presence of underlying salt or for the influence of salt movement evident by disruption of near-surface electrically conductive horizons. These horizons occur in several stratigraphic units, mainly of Carboniferous to Cretaceous age. Only a few examples of localised folding/faulting have been noted in the shallow conductive stratigraphy that have potentially formed above isolated salt domes. Distinct zones of disruption within the shallow conductive stratigraphy generally occur along the margins of the present-day salt depocentre, resulting from dissolution and movement of salt during several stages. This study demonstrates the potential AEM has to assist in mapping salt-related structures, with implications for geological storage of hydrogen. In addition, this study produces a regional near-surface multilayered chronostratigraphic interpretation, which contributes to constructing a 3D national geological architecture, in support of environmental management, hazard mapping and resource exploration. <b>Citation: </b>Connors K. A., Wong S. C. T., Vilhena J. F. M., Rees S. W. & Feitz A. J., 2022. Canning Basin AusAEM interpretation: multilayered chronostratigraphic mapping and investigating hydrogen storage potential. In: Czarnota, K (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146376

  • <div>Lithospheric structure and composition have direct relevance for our understanding of mineral prospectivity. Aspects of the lithosphere can be imaged using geophysical inversion or analysed from exhumed samples at the surface of the Earth, but it is a challenge to ensure consistency between competing models and datasets. The LitMod platform provides a probabilistic inversion framework that uses geology as the fabric to unify multiple geophysical techniques and incorporates a priori geochemical information. Here, we present results from the application of LitMod to the Australian continent. The rasters summarise the results and performance of a Markov-chain Monte Carlo sampling from the posterior model space. Release FR23 is developed using primary-mode Rayleigh phase velocity grids adapted from Fishwick & Rawlinson (2012).</div><div><br></div><div>Geoscience Australia's Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia's geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia's transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia's regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div>