From 1 - 10 / 20
  • Carnarvon Shelf reef polygons were manually digitized from multibeam echosounder datasets collected on marine survey GA0308 in August/September 2008. Reef areas were defined as exposed, hard substrate that are often raised above the surrounding seafloor. They were mapped using bathymetry and backscatter data along with bathymetric derivatives including; slope, hillshaded bathymetry and contours. Features were mapped at a scale of 1:10 000. This dataset is published with the permission of the CEO, Geoscience Australia.

  • Browse Shelf reef polygons were manually digitized from multibeam echosounder datasets collected on marine survey GA0345/GA0346/TAN1411 in October/November 2014. Reef areas were defined as exposed, hard substrate that are often raised above the surrounding seafloor. The continental shelf was defined using the 200 m depth contour. They were mapped using bathymetry and backscatter data along with bathymetric derivatives including; slope, hillshaded bathymetry and contours. Features were mapped at a scale of 1:10 000. This dataset is published with the permission of the CEO, Geoscience Australia.

  • <div>An airborne gravity survey was conducted over the North East Canning area in the Kimberley region of Western Australia as a part of the Tanami-NE Canning Western Australia Airborne Gravity Survey 2017. The survey was part of a collaborative research project between Geoscience Australia (GA) and the Geological Survey of Western Australia. Gravity data was collected at 5 km wavelength resolution with the purpose to help characterise key undercover geological elements of the region. The survey was conducted by Thomson Aviation Pty Ltd with a GT-2A gravimeter and managed by Geoscience Australia. A total of 23,953.65 line km of data were acquired over an area of 53,346 km².</div><div><strong>Survey details</strong></div><div>Survey Name: Tanami North East Canning Airborne gravity survey</div><div>State/Territory: Western Australia (WA)</div><div>Datasets Acquired: Airborne gravity</div><div> Geoscience Australia Project Number: P1291A</div><div> Acquisition Start Date: 17 August 2017</div><div> Acquisition End Date: 15 November 2017</div><div> Flight line spacing: 2.5 km</div><div> Flight line direction: 180deg / NS</div><div> Tie line spacing: 25km</div><div> Tie line direction: 270 deg / EW</div><div>Total line kilometers: 23,953.65</div><div> Nominal terrain clearance (above ground level): 710 m</div><div> Aircraft model: GippsAero GA-8 Airvan</div><div>Data Acquisition: Thomson Aviation Pty Ltd</div><div> Project Management: Geoscience Australia</div><div> Quality Control: CMG Operations Pty Ltd and Geoscience Australia</div><div> Dataset Ownership: GSWA and Geoscience Australia</div><div><br></div><div><strong>Files included in this download </strong></div><div>&nbsp;</div><div>This data package release contains the final survey deliverables received from the contractor Thomson Aviation, with an initial QC by CMG Operations Pty Ltd, then peer reviewed by Dr Jack McCubbine (Geoscience Australia).</div><div>&nbsp;</div><div>The horizontal datum and projection for all the data are GDA94 and MGA51, respectively.</div><div>&nbsp;</div><div><strong>1.</strong> <strong><em>Point-located Data / line data</em></strong></div><div>ASCII column XYZ and ASEG-GDF2 format with accompanying description and definition files. </div><div><br></div><div> <strong><em>2.Grids</em></strong> –</div><div> Datum:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;GDA94</div><div>Projection:&nbsp;&nbsp;MGA51</div><div>Grid cell size:&nbsp;500m</div><div>Format: ERMapper (.ers)</div><div>Gravity datum: AAGD07. </div><div>&nbsp;</div><div>There are 24 gridded data supplied in ERMapper (.ers) format. The grid cell size is 500 metres. The gravity datum used is AAGD07.</div><div><br></div><div> <strong>3. Reports</strong> </div><div> • Final survey logistic report delivered to Geoscience Australia by the survey contractor - <em>TNC-NE-CANNING-FINAL-REPORT.PDF</em></div><div>• QC report from the peer reviewing the data package: <em>Tanami - North East Canning QC report.pdf</em></div><div> </div><div>The data from this Tanami North East Canning survey can also be downloaded from the Geological Survey of Western Australia’s MAGIX platform at https://magix.dmirs.wa.gov.au and GeoVIEW.WA web mapping application at https://geoview.dmp.wa.gov.au/GeoView under reference number 71201.&nbsp;</div><div><br></div>

  • Vlaming Shelf reef polygons were manually digitized from multibeam echosounder datasets collected on marine survey GA0334 in March/April 2012. Reef areas were defined as exposed, hard substrate that are often raised above the surrounding seafloor. They were mapped using bathymetry and backscatter data along with bathymetric derivatives including; slope, hillshaded bathymetry and contours. Features were mapped at a scale of 1:10 000. This dataset is published with the permission of the CEO, Geoscience Australia.

  • CGG Aviation (now Xcalibur Multiphysics) collected airborne gravity data in the Kidson area covering parts of the Gibson and Great Sandy Deserts in central Western Australia as part of a collaborative project between Geoscience Australia (GA) and the Geological Survey of Western Australia (GSWA). The aim of the project was to collect airborne gravity gradiometry data in the region at 2500 m wavelength resolution to help characterise key undercover geological elements of the region. The survey consisted of a Main block and an Extension block. Data were acquired from North/South flight lines (Main block) and East-West flight lines (Extension block) with an average target ground clearance of 120m. Tie lines at 25,000m line spacing were flown only for the Main block. A total of 78,700 line kilometres of data were collected during the survey. <b>Survey details</b> Survey Name: Kidson WA airborne gravity gradiometer survey 2017 State/Territory: Western Australia Datasets Acquired: Airborne gravity gradiometer Geoscience Australia Project Number: Acquisition Start Date: July 21, 2017 Acquisition End Date: May 3, 2018 Number of blocks: 2 Flight line spacing: 2,500m Flight line direction: Area 1 - 180 deg/ NS; Area 2 - 270 deg/EW Tie line spacing: 25,000m Tie line direction: Area 1 only - 270 deg / EW Total distance flown: 78,700 line kilometres Nominal terrain clearance (above ground level): 120m Clearance method: Drape Aircraft type: 2 aircrafts with different Falcon AGG system installed - Cessna Grand Caravan 208B / Full spectrum Falcon system Kepler/Newton Data Acquisition: CGG Aviation Australia Pty Ltd Project Management: Geoscience Australia Quality Control: Dr Mark Dransfield contracted by Geoscience Australia Dataset Ownership: Western Australia and Geoscience Australia <b>Files included in this download</b> The original agreement with CGG Aviation Australia Pty Ltd (CGG) stated that gradient point located data was available for purchase on non-exclusive terms from CGG until 30 June 2027, after which date the gradient data would be made public. In July 2021, the terms of the agreement changed after Xcalibur Multiphysics acquired CGG Aviation Pty Ltd. Xcalibur authorised the release of the gradient data. A new final dataset and report was generated by Xcalibur and delivered to Geoscience Australia. This data release contains the gradient point located data. <b>1. Point-located Data / line data</b> ASEG-GDF2 and Geosoft GDB format with accompanying description and definition files. The sample frequency is 8Hz. <b>2. Grids</b> Datum: GDA2020 Projection: MGA 51 Grid cell size: 500m Formats: Geosoft GRD and ERMapper (.ers) with accompanying description files. <b>3. Reports</b> • Final survey logistic report delivered to Geoscience Australia by the survey contractor. • Kidson QC report from Dr Mark Dransfield The data from this Kidson airborne gravity gradiometry survey has been released and can be downloaded from the Geological Survey of Western Australia’s MAGIX platform at https://magix.dmirs.wa.gov.au and GeoVIEW.WA web mapping application at https://geoview.dmp.wa.gov.au/GeoView under reference number 71234.

  • <div>The Tanami–King Leopold survey was part of a collaborative research project between Geoscience Australia (GA) and the Geological Survey of Western Australia. Gravity data was collected at 5 km wavelength resolution with the purpose to help characterise key undercover geological elements of the region. The project area extends approximately from the Balgo Hills region near the border with the Northern Territory through to Derby in the west. The survey was conducted by Thomson Aviation Pty Ltd with a GT-2A gravimeter and managed by GA. A total of 25,869.36 line km of data were acquired over an area of 58,040 km².</div><div>&nbsp;</div><div><strong>Survey details</strong></div><div>Survey Name: Tanami-King Leopold WA airborne gravity survey 2017</div><div>State/Territory: Western Australia (WA)</div><div>Datasets Acquired: Airborne gravity</div><div> Geoscience Australia Project Number: P1291B</div><div> Acquisition Start Date: June 16, 2017</div><div> Acquisition End Date: August 12, 2017</div><div> Flight line spacing: 2.5 km</div><div> Flight line direction: 180deg / NS</div><div> Tie line spacing: 25km</div><div> Tie line direction: 270 deg / EW</div><div>Total line kilometers: 25,869.36</div><div> Nominal terrain clearance (above ground level): 477 m</div><div> Aircraft type: GippsAero GA-8 Airvan</div><div>Data Acquisition: Thomson Aviation </div><div> Project Management: Geoscience Australia</div><div> Quality Control: CMG Operations Pty Ltd and Geoscience Australia</div><div> Dataset Ownership: GSWA and Geoscience Australia</div><div>&nbsp;</div><div><strong>Files included in this download</strong></div><div>This data package release contains the final survey deliverables received from the contractor Thomson Aviation. Quality control and data processing services were provided by CMG Operations Pty Ltd and peer reviewed by Dr Jack McCubbine (Geoscience Australia).</div><div>&nbsp;</div><div>The horizontal datum and projection for all the data are GDA94 and MGA52, respectively.</div><div>&nbsp;</div><div><strong>1.</strong> <strong><em>Point-located Data / line data</em></strong></div><div>ASCII column XYZ and ASEG-GDF2 format with accompanying description and definition files.</div><div><br></div><div> <strong><em>2.Grids</em></strong> </div><div> </div><div>Datum:&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;GDA94</div><div>Projection:&nbsp;&nbsp;MGA52</div><div>Grid cell size:&nbsp;500m</div><div>Format: ERMapper (.ers)</div><div>Gravity datum: AAGD07. </div><div>&nbsp;</div><div>There are 24 gridded data supplied in ERMapper (.ers) format. The grid cell size is 500 metres. The gravity datum used is AAGD07. </div><div><br></div><div> <strong>3. Reports</strong> </div><div> • Final survey logistic report delivered to Geoscience Australia by the survey contractor: <em>TNC-TANAMI-FINAL-REPORT.pdf</em></div><div>• QC report from the peer reviewer of the data package: <em>Tanami King Leopold QC report.pdf</em></div><div> </div><div>The data from this Tanami King Leopold survey can also be downloaded from the Geological Survey of Western Australia’s MAGIX platform at https://magix.dmirs.wa.gov.au and GeoVIEW.WA web mapping application at https://geoview.dmp.wa.gov.au/GeoView under reference number 71200.&nbsp;</div><div><br></div>

  • Refined wind vulnerability curves for residential houses in Western Australia. The dataset contains heuristic vulnerability curves for individual communities in WA, initially provided by Geoff Boughton (JCU), and modified by Martin Wehner (GA), in line with commentary from Geoff that the curves are representative of individual houses. The vulnerability would increase in a community situation due to debris generation from upwind houses. An additional curve for the reinforced masonry/concrete roof houses observed in Exmouth is also included.

  • The product consists of 5,291 line kilometres of time-domain airborne electromagnetic (AEM) geophysical data acquired in the Fitzroy River Catchment of the West Kimberley region, the electrical conductivity models derived from the dataset, and the survey operations and processing report. The data were acquired using the heliborne SkyTEM-312 AEM system. A locality diagram for the survey is shown below. The survey was funded by the Government of Western Australia, as part of its Water for Food Initiative, through the Department of Water (WA DoW). The survey was managed by Geoscience Australia as part of a national collaborative framework project agreement with WA DoW. The aim of the survey was to map the electrical properties of the top 200-300 metres of the sub-surface geology and hydrogeology within the study area. Geoscience Australia contracted SkyTEM Australia Pty Ltd to acquire the AEM data using the SkyTEM-312 system in September and October 2015. The data were also processed by SkyTEM Australia Pty Ltd using its in-house processing and inversion techniques. The Kimberley Region in north-west Australia is a priority area for the development of irrigated agriculture. The hydrogeology of the area is poorly understood, hence the primary aim of the AEM survey was to provide geophysical data in support of groundwater investigations. Specific objectives of the AEM survey included mapping the extent of regional Canning Basin aquifers to aid assessment of groundwater resources and sustainable yield estimates for agricultural development; provide AEM data in transects to underpin studies of surface-groundwater interactions (groundwater discharge and recharge potential) associated with the major rivers, and permanent river pools in particular; detect and assess potential groundwater salinity hazards within proposed irrigation areas; and map the seawater intrusion (SWI) interface. Very specific mapping objectives were developed for each sub-area, and the survey was designed with these detailed local objectives in mind. The survey design reflects two scales of investigation: 1. Two areas (Knowsley-Mowanjum and GoGo-Fitzroy Crossing) with higher density flight line spacing (400 m) in areas with advanced plans for development of irrigated agriculture; 2. Irregular grid of regional transects and lines acquired along river tracts reflecting the reconnaissance nature of regional investigations in a frontier hydrogeological area. Much of the area lies underneath cover of sedimentary basins and is a poorly-understood element of Australia¿s geology. The Fitzroy Trough is also host to a number of mineral systems including diamonds and base metal mineralisation, as well as shale gas resources. The survey data should assist with understanding of the basin geology and neotectonics, while lamproite pipes have also been intersected in a number of flight lines. The survey data will also add to the knowledge of the thickness and character of alluvium and regolith cover and will inform future geological mapping in the region. The data will be available from Geoscience Australia¿s web site free of charge. The data release package includes: 1. Point-located electromagnetic line data with associated position, height, orientation, transmitter current, and derived ground elevation data. These data are in ASCII column format with associated ASEG-GDF2 header files. All regular survey, repeat lines and high altitude lines are included in the dataset. The dataset is split into Parts 1 and 2 based on the differences in the receiver gate times for each part. 2. Point-located magnetic line data with associated position, height, orientation, and derived ground elevation data. These data are in ASCII column format with associated ASEG-GDF2 header files. All regular survey, repeat lines and high altitude lines are included in the dataset. 3. Point-located line data for conductivity estimates derived by SkyTEM Australia Pty Ltd using its Automated Laterally Constrained Inversion (aLCI) algorithm with associated position, height, orientation, and derived ground elevation data. Data include the conductivity estimate for each of the 30 inversion model layers, the layer elevation, estimated depth of investigation, and data fit residuals. These data are in ASCII column format with associated ASEG-GDF2 header files. All regular survey and repeat lines are included in the dataset. 4. Gridded data for the derived ground elevations, total magnetic intensity, and the conductivity of the 30 aLCI inversion model layers. The grids are in ER Mapper® binary raster grid format with associated header files. The grids have a cell size of 100 m. For the aLCI inversion layer conductivity grids, there are versions that are masked (set to undefined) below the estimated depth of investigation and unmasked. 5. Graphical multiplots and spatial images derived from the aLCI inversion. The multiplots show the derived aLCI conductivity depth sections and selected data panels for each individual flight line in Portable Network Graphics (PNG) and Portable Document Format (PDF) formats. The spatial images show colour images of the conductivity for each aLCI model layer and are in PNG, PDF and geo-located Tagged Image Format (TIF) files suitable for use in MAPINFO. 6. The survey Operations and Processing Report, which provides the details of the AEM system, logistics, data acquisition, data processing and the aLCI inversion parameters. 7. ESRI shapefiles and KML files of flight lines. Summary Survey Name West Kimberley Airborne EM Survey, WA, 2015 (Water for Food) State Western Australia Sub Region West Kimberley Area 20,314 km2 Line km 5,291 km Survey Completed 17 October 2015 AEM system SkyTEM-312 Processing SkyTEM Australia Pty Ltd

  • The northern Houtman Sub-basin is an under-explored region of Australia’s western continental margin. It is located at the transition between the non-volcanic margin of the northern Perth Basin and the volcanic province of the Wallaby Plateau, and lies adjacent to the Wallaby-Zenith Transform Margin. In 2014-15, Geoscience Australia acquired new 2D seismic data (GA-349) across the northern Houtman Sub-basin to assess its hydrocarbon prospectivity. This study integrated interpretation of the recently acquired GA-349 survey, with Geoscience Australia’s existing regional interpretation of the Houtman and Abrolhos sub-basins, to develop a 2D structural and stratigraphic interpretation for the study area. As there are no wells in the northern Houtman sub-basin, the age and lithologies of the mapped sequences were derived from regional mapping, stratal relationships and seismic facies. The new data clearly images a large depocentre, including a much thicker Paleozoic section (up to 13 km) than previously recognised. Extending the length of the inboard part of northern sub-basin are a series of large half-graben (7-10 km thick), interpreted to have formed as a result of Permian rifting. Overlying these half-graben, and separated by an unconformity, is a thick succession (up to 6 km) interpreted to represent a subsequent late Permian to Early Jurassic phase of the thermal subsidence. A second phase of rifting started in the Early Jurassic and culminated in Early Cretaceous breakup. The sedimentary succession deposited during this phase of rifting is highly faulted and heavily intruded in the outboard part of the basin, adjacent to the Wallaby Saddle, where intrusive and extrusive complexes are clearly imaged on the seismic. In contrast to the southern part of the Houtman Sub-basin, which experienced rapid passive margin subsidence and regional tilting after the Valanginian breakup, the northern sub-basin remained mostly exposed sub-aerially until the Aptian while the Wallaby Zenith Fracture Zone continued to develop. Poster/Extended Abstract presented at the Australian Exploration Geoscience Conference (AEGC) 2018 (https://www.aig.org.au/events/first-australian-exploration-geoscience-conference/)

  • <p>Geoscience Australia (GA) generated a series of gravity and magnetic grids and enhancements covering Northern Australia. Several derivative gravity datasets have been generated 1) for the North-West Shield Western Australia region (approximately between latitudes 7‒26⁰ S and longitudes 110‒130⁰ E), 2) for the Northern Territory (approximately between latitudes 7‒26⁰ S and longitudes 125.5‒141⁰ E) and for Queensland (approximately between latitudes 7‒30⁰ S and longitudes 135‒160⁰ E). The magnetic dataset has been generated only for the North-West Shield Western Australia region (approximately between latitudes 7‒26⁰ S and longitudes 110‒130⁰ E). The magnetic and gravity data were downloaded from the Geophysical Archive Data Delivery System (GADDS), website (http://www.geoscience.gov.au/cgi-bin/mapserv?map=/nas/web/ops/prod/apps/mapserver/gadds/wms_map/gadds.map&mode=browse). Satellite Free-air (FA) gravity v27.1 (released March 11, 2019) and Satellite Topography v19.1 (released January 14, 2019) data were sourced from Sandwell et al. (2014) and downloaded from the Scripps Institution of Oceanography (SIO), National Oceanic and Atmospheric Administration (NOAA), U.S. Navy and National Geospatial-Intelligence Agency (NGA) (SIO Satellite Geodesy, website, http://topex.ucsd.edu/WWW_html/mar_grav.html). The Satellite Bouguer gravity grid with onshore correction density of 2.67 gcm-3 and offshore correction density of 2.20 gcm-3 was derived from the Free-air gravity v27.1 and Topography data V19.1. This Bouguer gravity grid was used for filling areas of data gaps in the offshore region. <p>Data evaluation and processing of gravity and magnetic data available in the area of interest resulted in the production of stitched onshore-offshore Bouguer gravity grid derived from offshore satellite Bouguer gravity grid and GA’s onshore ground and airborne gravity survey data and a stitched Total Magnetic Intensity (TMI) grid derived from airborne and shipborne surveys (Tables 1 and 5). A Reduction to the Pole (RTP) grid was derived from the stitched TMI grid. The TMI, RTP, FA and terrain corrected Bouguer gravity anomalies are standard datasets for geological analysis. The free-air gravity anomaly provides the raw and basic gravity information. Images of free-air gravity are useful for first-pass interpretation and the data is used for gravity modelling. Magnetic anomalies provide information on numerous magnetic sources, including deep sources as arising from the structure and composition of magnetic basement and shallow sources such as intra-sedimentary magnetic units (e.g. volcanics, intrusions, and magnetic sedimentary layers). A standard TMI image will contain information from all these sources. Geosoft Oasis montaj software was used throughout the data processing and enhancement procedure and the montaj GridKnit module was used to generate the stitched gravity and magnetic grids. <p>Enhancement techniques have been applied to the final processed Bouguer gravity and RTP magnetic grids to highlight subtle features from various sources and to separate anomalies from different source depths. These enhancement techniques are described in the next section. <p>Enhancement processing techniques and results <p>A summary of image processing techniques used to achieve various outcomes is described in Table 1. <p>Data type Filter applied Enhancement/outcome <p>Gravity/Magnetic First vertical derivative (1VD) Near surface features (e.g. intrabasinal) <p>Gravity/Magnetic Upward continuation Noise reduction in data <p>Gravity/Magnetic Low pass filter, or large distance upward continuation Enhancement of deep features (e.g. basement) <p>Gravity/Magnetic High pass filter Enhancement of shallow features (e.g. surface anomalies) <p>Gravity/Magnetic Tilt filter and 1VD Enhancement of structure (e.g. in basement) <p>Gravity/Magnetic ZS-Edgezone and ZS-Edge filters Enhancement of edges <p>Gravity/Magnetic horizontal modulus / horizontal gradient Enhancement of boundaries <p>Magnetic RTP (reduction to the pole), Compound Anomaly, and Analytic Signal filter Accurate location of sources