From 1 - 10 / 23
  • The Layered Geology of Australia web map service is a seamless national coverage of Australia’s surface and subsurface geology. Geology concealed under younger cover units are mapped by effectively removing the overlying stratigraphy (Liu et al., 2015). This dataset is a layered product and comprises five chronostratigraphic time slices: Cenozoic, Mesozoic, Paleozoic, Neoproterozoic, and Pre-Neoproterozoic. As an example, the Mesozoic time slice (or layer) shows Mesozoic age geology that would be present if all Cenozoic units were removed. The Pre-Neoproterozoic time slice shows what would be visible if all Neoproterozoic, Paleozoic, Mesozoic, and Cenozoic units were removed. The Cenozoic time slice layer for the national dataset was extracted from Raymond et al., 2012. Surface Geology of Australia, 1:1 000 000 scale, 2012 edition. Geoscience Australia, Canberra.

  • <div>This document provides metadata for the gross depositional environment (GDE) interpretations that have been generated in support of the energy resource assessments under the Australia’s Future Energy Resources (AFER) project.&nbsp;&nbsp;</div><div>The AFER projects is part of Geoscience Australia’s Exploring for the Future (EFTF) Program—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf.&nbsp;</div><div>The GDE data sets provide high level classifications of interpreted environments where sediments were deposited within each defined play interval in the Pedirka, Simpson and Western Eromanga basins. Twelve gross depositional environments have been interpreted and mapped in the study (Table 1). A total of 14 play intervals have been defined for the Pedirka, Simpson and Western Eromanga basins by Bradshaw et al. (2022, in press), which represent the main chronostratigraphic units separated by unconformities or flooding surfaces generated during major tectonic or global sea level events (Figure 1). These play intervals define regionally significant reservoirs for hydrocarbon accumulations or CO2 geological storage intervals, and often also include an associated intraformational or regional seal.&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;</div><div>GDE interpretations are a key data set for play-based resources assessments in helping to constrain reservoir presence. The GDE maps also provide zero edges showing the interpreted maximum extent of each play interval, which is essential information for play-based resource assessments, and for constructing accurate depth and thickness grids.&nbsp;&nbsp;</div><div>GDE interpretations for the AFER Project are based on integrated interpretations of well log and seismic data, together with any supporting palynological data. Some play intervals also have surface exposures within the study area which can provide additional published paleo-environmental data. The Pedirka, Simpson and Western Eromanga basins are underexplored and contain a relatively sparse interpreted data set of 42 wells and 233 seismic lines (Figure 2). Well and outcrop data provide the primary controls on paleo-environment interpretations, while seismic interpretations constrain the interpreted zero edges for each play interval. The sparse nature of seismic and well data in the study area means there is some uncertainty in the extents of the mapped GDE’s.&nbsp;&nbsp;</div><div>The data package includes the following datasets:&nbsp;&nbsp;</div><div>Play interval tops for each of the 42 wells interpreted – provided as an ‘xlsx’ file.&nbsp;</div><div>A point file (AFER_Wells_GDE) capturing the GDE interpretation for each of the 14 play intervals in each of the 42 wells – provided as both a shapefile and within the AFER_GDE_Maps geodatabase.&nbsp;</div><div>Gross depositional environment maps for each of the 14 play intervals (note that separate GDE maps have been generated for the Namur Sandstone and Murta Formation within the Namur-Murta play interval, and for the Adori Sandstone and Westbourne Formation within the Adori-Westbourne play interval) – provided as both shapefiles and within the AFER_GDE_Maps geodatabase.&nbsp;</div><div>&nbsp;</div><div>These GDE data sets are being used to support the AFER Project’s play-based energy resource assessments in the Western Eromanga, Pedirka and Simpson basins.&nbsp;</div><div><br></div>

  • Alkaline and related rocks are a relatively rare class of igneous rocks worldwide. Alkaline rocks encompass a wide range of rock types and are mineralogically and geochemically diverse. They are typically though to have been derived by generally small to very small degrees of partial melting of a wide range of mantle compositions. As such these rocks have the potential to convey considerable information on the evolution of the Earth’s mantle (asthenosphere and lithosphere), particularly the role of metasomatism which may have been important in their generation or to which such rocks may themselves have contributed. Such rocks, by their unique compositions and or enriched source protoliths, also have considerable metallogenic potential, e.g., diamonds, Th, U, Zr, Hf, Nb, Ta, REEs. It is evident that the geographic occurrences of many of these rock types are also important, and may relate to presence of old cratons, craton margins or major lithospheric breaks. Finally, many alkaline rocks also carry with them mantle xenoliths providing a snapshot of the lithospheric mantle composition at the time of their emplacement. Accordingly, although Alkaline and related rocks comprise only a volumetrically minor component of the geology of Australia, they are of considerable importance to studies of lithospheric composition, evolution and architecture and to helping constrain the temporal evolution of the lithosphere, as well as more directly to metallogenesis and mineralisation. This GIS product is part of an ongoing compilation of the distribution and geology of alkaline and related rocks throughout Australia. The accompanying report document alkaline and related rocks of Mesozoic age.

  • To meet the increasing demand for natural resources globally, industry faces the challenge of exploring new frontier areas that lie deeper undercover. Here, we present an approach to, and initial results of, modelling the depth of four key chronostratigraphic packages that obscure or host mineral, energy and groundwater resources. Our models are underpinned by the compilation and integration of ~200 000 estimates of the depth of these interfaces. Estimates are derived from interpretations of newly acquired airborne electromagnetic and seismic reflection data, along with boreholes, surface and solid geology, and depth to magnetic source investigations. Our curated estimates are stored in a consistent subsurface data repository. We use interpolation and machine learning algorithms to predict the distribution of these four packages away from the control points. Specifically, we focus on modelling the distribution of the base of Cenozoic-, Mesozoic-, Paleozoic- and Neoproterozoic-age stratigraphic units across an area of ~1.5 million km2 spanning the Queensland and Northern Territory border. Our repeatable and updatable approach to mapping these surfaces, together with the underlying datasets and resulting models, provides a semi-national geometric framework for resource assessment and exploration. <b>Citation:</b> Bonnardot, M.-A., Wilford, J., Rollet, N., Moushall, B., Czarnota, K., Wong, S.C.T. and Nicoll, M.G., 2020. Mapping the cover in northern Australia: towards a unified national 3D geological model. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.

  • This data package, completed as part of Geoscience Australia’s National Groundwater Systems (NGS) Project, presents results of the second iteration of the 3D Great Artesian Basin (GAB) and Lake Eyre Basin (LEB) (Figure 1) geological and hydrogeological models (Vizy & Rollet, 2023) populated with volume of shale (Vshale) values calculated on 2,310 wells in the Surat, Eromanga, Carpentaria and Lake Eyre basins (Norton & Rollet, 2023). This provides a refined architecture of aquifer and aquitard geometry that can be used as a proxy for internal, lateral, and vertical, variability of rock properties within each of the 18 GAB-LEB hydrogeological units (Figure 2). These data compilations and information are brought to a common national standard to help improve hydrogeological conceptualisation of groundwater systems across multiple jurisdictions. This information will assist water managers to support responsible groundwater management and secure groundwater into the future. This 3D Vshale model of the GAB provides a common framework for further data integration with other disciplines, industry, academics and the public and helps assess the impact of water use and climate change. It aids in mapping current groundwater knowledge at a GAB-wide scale and identifying critical groundwater areas for long-term monitoring. The NGS project is part of the Exploring for the Future (EFTF) program—an eight-year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program. The program seeks to inform decision-making by government, community, and industry on the sustainable development of Australia's mineral, energy, and groundwater resources, including those to support the effective long-term management of GAB water resources. This work builds on the first iteration completed as part of the Great Artesian Basin Groundwater project (Vizy & Rollet, 2022; Rollet et al., 2022), and infills previous data and knowledge gaps in the GAB and LEB with additional borehole, airborne electromagnetic and seismic interpretation. The Vshale values calculated on additional wells in the southern Surat and southern Eromanga basins and in the whole of Carpentaria and Lake Eyre basins provide higher resolution facies variability estimates from the distribution of generalised sand-shale ratio across the 18 GAB-LEB hydrogeological units. The data reveals a complex mixture of sedimentary environments in the GAB, and highlights sand body development and hydraulic characteristics within aquifers and aquitards. Understanding the regional extents of these sand-rich areas provides insights into potential preferential flow paths, within and between the GAB and LEB, and aquifer compartmentalisation. However, there are limitations that require further study, including data gaps and the need to integrate petrophysics and hydrogeological data. Incorporating major faults and other structures would also enhance our understanding of fluid flow pathways. The revised Vshale model, incorporating additional boreholes to a total of 2,310 boreholes, contributes to our understanding of groundwater flow and connectivity in the region, from the recharge beds to discharge at springs, and Groundwater Dependant Ecosystems (GDEs). It also facilitates interbasinal connectivity analysis. This 3D Vshale model offers a consistent framework for integrating data from various sources, allowing for the assessment of water use impacts and climate change at different scales. It can be used to map groundwater knowledge across the GAB and identify areas that require long-term monitoring. Additionally, the distribution of boreholes with gamma ray logs used for the Vshale work in each GAB and LEB units (Norton & Rollet, 2022; 2023) is used to highlight areas where additional data acquisition or interpretation is needed in data-poor areas within the GAB and LEB units. The second iteration of surfaces with additional Vshale calculation data points provides more confidence in the distribution of sand bodies at the whole GAB scale. The current model highlights that the main Precipice, Hutton, Adori-Springbok and Cadna-owie‒Hooray aquifers are relatively well connected within their respective extents, particularly the Precipice and Hutton Sandstone aquifers and equivalents. The Bungil Formation, the Mooga Sandstone and the Gubberamunda Sandstone are partial and regional aquifers, which are restricted to the Surat Basin. These are time equivalents to the Cadna-owie–Hooray major aquifer system that extends across the Eromanga Basin, as well as the Gilbert River Formation and Eulo Queen Group which are important aquifers onshore in the Carpentaria Basin. The current iteration of the Vshale model confirms that the Cadna-owie–Hooray and time equivalent units form a major aquifer system that spreads across the whole GAB. It consists of sand bodies within multiple channel belts that have varying degrees of connectivity' i.e. being a channelised system some of the sands will be encased within overbank deposits and isolated, while others will be stacked, cross-cutting systems that provide vertical connectivity. The channelised systemtransitions vertically and laterally into a shallow marine environment (Rollet et al., 2022). Sand-rich areas are also mapped within the main Poolowanna, Brikhead-Walloon and Westbourne interbasinal aquitards, as well as the regional Rolling Downs aquitard that may provide some potential pathways for upward leakage of groundwater to the shallow Winton-Mackunda aquifer and overlying Lake Eyre Basin. Further integration with hydrochemical data may help groundtruth some of these observations. This metadata document is associated with a data package including: • Seventeen surfaces with Vshale property (Table 1), • Seventeen surfaces with less than 40% Vshale property (Table 2), • Twenty isochore with average Vshale property (Table 3), • Twenty isochore with less than 40% Vshale property (Table 4), • Sixteen Average Vshale intersections of less than 40% Vshale property delineating potential connectivity between isochore (Table 5), • Sixteen Average Vshale intersections of less than 40% Vshale property delineating potential connectivity with isochore above and below (Table 6), • Seventeen upscaled Vshale log intersection locations (Table 7), • Six regional sections showing geology and Vshale property (Table 8), • Three datasets with location of boreholes, sections, and area of interest (Table 9).

  • <b>This data package is superseded by a second iteration presenting updates on 3D geological and hydrogeological surfaces across eastern Australia that can be accessed through </b><a href="https://dx.doi.org/10.26186/148552">https://dx.doi.org/10.26186/148552</a> The Australian Government, through the National Water Infrastructure Fund – Expansion, commissioned Geoscience Australia to undertake the project ‘Assessing the Status of Groundwater in the Great Artesian Basin’ (GAB). The project commenced in July 2019 and will finish in June 2022, with an aim to develop and evaluate new tools and techniques to assess the status of GAB groundwater systems in support of responsible management of basin water resources. While our hydrogeological conceptual understanding of the GAB continues to grow, in many places we are still reliant on legacy data and knowledge from the 1970s. Additional information provided by recent studies in various parts of the GAB highlights the level of complexity and spatial variability in hydrostratigraphic units across the basin. We now recognise the need to link these regional studies to map such geological complexity in a consistent, basin-wide hydrostratigraphic framework that can support effective long-term management of GAB water resources. Geological unit markers have been compiled and geological surfaces associated with lithostratigraphic units have been correlated across the GAB to update and refine the associated hydrogeological surfaces. Recent studies in the Surat Basin in Queensland and the Eromanga Basin in South Australia are integrated with investigations from other regions within the GAB. These bodies of work present an opportunity to link regional studies and develop a revised, internally consistent geological framework to map geological complexity across the GAB. Legacy borehole data from various sources, seismic and airborne electromagnetic (AEM) data were compiled, then combined and analysed in a common 3D domain. Correlation of interpreted geological units and stratigraphic markers from these various data sets are classified using a consistent nomenclature. This nomenclature uses geological unit subdivisions applied in the Surat Cumulative Management Area (OGIA (Office of Groundwater Impact Assessment), 2019) to correlate time equivalent regional hydrogeological units. Herein we provide an update of the surface extents and thicknesses for key hydrogeological units, reconciling geology across borders and providing the basis for a consistent hydrogeological framework at a basin-wide scale. The new surfaces can be used for facilitating an integrated basin systems assessment to improve our understanding of potential impacts from exploitation of sub-surface resources (e.g., extractive industries, agriculture and injection of large volumes of CO2 into the sub-surface) in the GAB and providing a basis for more robust water balance estimates. This report is associated with a data package including (Appendix A – Supplementary material): • Nineteen geological and hydrogeological surfaces from the Base Permo-Carboniferous, Top Permian, Base Jurassic, Base Cenozoic to the surface (Table 2.1), • Twenty-one geological and hydrogeological unit thickness maps from the top crystalline basement to the surface (Figure 3.7 to Figure 3.27), • The formation picks and constraining data points (i.e., from boreholes, seismic, AEM and outcrops) compiled and used for gridding each surface (Table 3.8).

  • The document summarises new seismic interpretation metadata for two key horizons from Base Jurassic to mid-Cretaceous strata across the western and central Eromanga Basin, and the underlying Top pre-Permian unconformity. New seismic interpretations were completed during a collaborative study between the National Groundwater Systems (NGS) and Australian Future Energy Resources (AFER) projects. The NGS and AFER projects are part of Exploring for the Future (EFTF)—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf. The seismic interpretations build on previous work undertaken as part of the ‘Assessing the Status of Groundwater in the Great Artesian Basin’ (GAB) Project, commissioned by the Australian Government through the National Water Infrastructure Fund – Expansion (Norton & Rollet, 2022; Vizy & Rollet, 2022; Rollet et al., 2022; Rollet et al., in press.), the NGS Project (Norton & Rollet, 2023; Rollet et al., 2023; Vizy & Rollet, 2023) and the AFER Project (Bradshaw et al., 2022 and in press, Bernecker et al., 2022, Iwanec et al., 2023; Iwanec et al., in press). The recent iteration of revisions to the GAB geological and hydrogeological surfaces (Vizy & Rollet, 2022) provides a framework to interpret various data sets consistently (e.g., boreholes, airborne electromagnetic, seismic data) and in a 3D domain, to improve our understanding of the aquifer geometry, and the lateral variation and connectivity in hydrostratigraphic units across the GAB (Rollet et al., 2022). Vizy and Rollet (2022) highlighted some areas with low confidence in the interpretation of the GAB where further data acquisition or interpretation may reduce uncertainty in the mapping. One of these areas was in the western and central Eromanga Basin. New seismic interpretations are being used in the western Eromanga, Pedirka and Simpson basins to produce time structure and isochore maps in support of play-based energy resource assessment under the AFER Project, as well as to update the geometry of key aquifers and aquitards and the GAB 3D model for future groundwater management under the NGS Project. These new seismic interpretations fill in some data and knowledge gaps necessary to update the geometry and depth of key geological and hydrogeological surfaces defined in a chronostratigraphic framework (Hannaford et al., 2022; Bradshaw et al., 2022 and in press; Hannaford & Rollet, 2023). The seismic interpretations are based on a compilation of newly reprocessed seismic data (Geoscience Australia, 2022), as part of the EFTF program, and legacy seismic surveys from various vintages brought together in a common project with matching parameters (tying, balancing, datum correcting, etc.). This dataset has contributed to a consolidated national data coverage to further delineate groundwater and energy systems, in common data standards and to be used further in integrated workflows of mineral, energy and groundwater assessment. The datasets associated with the product provides value added seismic interpretation in the form of seismic horizon point data for two horizons that will be used to improve correlation to existing studies in the region. The product also provides users with an efficient means to rapidly access a list of core data used from numerous sources in a consistent and cleaned format, all in a single package. The following datasets are provided with this product: 1) Seismic interpretation in a digital format (Appendix A), in two-way-time, on key horizons with publically accessible information, including seismic interpretation on newly reprocessed data: Top Cadna-owie; Base Jurassic; Top pre-Permian; 2) List of surveys compiled and standardised for a consistent interpretation across the study area (Appendix B). 3) Isochore points between Top Cadna-owie and Base Jurassic (CC10-LU00) surfaces (Appendix C). 4) Geographical layer for the seismic lines compiled across Queensland, South Australia and the Northern Territory (Appendix D). These new interpretations will be used to refine the GAB geological and hydrogeological surfaces in this region and to support play-based energy resource assessments in the western Eromanga, Pedirka and Simpson basins.

  • The Solid Geology of the North Australian Craton web service delivers a seamless chronostratigraphic solid geology dataset of the North Australian Craton that covers north of Western Australia, Northern Territory and north-west Queensland. The data maps stratigraphic units concealed under cover by effectively removing the overlying cover (Liu et al., 2015). This dataset comprises five chronostratigraphic time slices, namely: Cenozoic, Mesozoic, Paleozoic, Neoproterozoic, and Pre-Neoproterozoic.

  • <div>This data package provides depth and isochore maps generated in support of the energy resource assessments under the Australia’s Future Energy Resources (AFER) project. Explanatory notes are also included.</div><div><br></div><div>The AFER project is part of Geoscience Australia’s Exploring for the Future (EFTF) Program—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, Geoscience Australia is building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf.</div><div><br></div><div>The depth and isochore maps are products of depth conversion and spatial mapping seismic interpretations by Szczepaniak et al. (2023) and Bradshaw et al. (2023) which interpreted 15 regional surfaces. These surfaces represent the top of play intervals being assessed for their energy resource potential (Figure 1). These seismic datasets were completed by play interval well tops by Bradshaw et al. (in prep), gross depositional environment maps, zero edge maps by Bradshaw et al. (in prep), geological outcrop data as well as additional borehole data from Geoscience Australia’s stratigraphic units database.</div><div><br></div><div>Depth and isochore mapping were undertaken in two to interactive phases; </div><div><br></div><div>1.&nbsp;&nbsp;&nbsp;&nbsp;A Model Framework Construction Phase – In this initial phase, the seismic interpretation was depth converted and then gridded with other regional datasets. </div><div><br></div><div>2.&nbsp;&nbsp;&nbsp;&nbsp;A Model Refinement and QC Phase – This phase focused on refining the model and ensuring quality control. Isochores were generated from the depth maps created in the previous phase. Smoothing and trend modelling techniques were then applied to the isochore to provide additional geological control data in areas with limited information and to remove erroneous gridding artefacts.&nbsp;</div><div><br></div><div>The final depth maps were derived from isochores, constructing surfaces both upward and downward from the CU10_Cadna-owie surface, identified as the most data-constrained surface within the project area. This process, utilizing isochores for depth map generation, honours all the available well and zero edge data while also conforming to the original seismic interpretation.</div><div><br></div><div>This data package includes the following datasets: </div><div><br></div><div>1)&nbsp;&nbsp;&nbsp;Depth maps, grids and point datasets measured in meters below Australian Height Datum (AHD, for 15 regional surfaces (Appendix A). </div><div>2)&nbsp;&nbsp;&nbsp;Isochore maps, grids and point datasets measured in meters, representing 14 surfaces/play internals (Appendix B).</div><div>&nbsp;</div><div>These depth and isochore maps are being used to support the AFER Project’s play-based energy resource assessments in the Pedirka and western Eromanga basins, and will help to support future updates of 3D geological and hydrogeological models for the Great Artesian Basin by Geoscience Australia.</div><div><br></div>

  • <div>This dataset represents the second version of a compilation of borehole stratigraphic unit data on a national scale (Figure 1). It builds on the previous Australian Borehole Stratigraphic Units Compilation (ABSUC) Version 1.0 (Vizy &amp; Rollet, 2023a) with additional new or updated stratigraphic interpretation on key boreholes located in Figure 2. Its purpose is to consolidate and standardise publicly accessible information from boreholes, including those related to petroleum, stratigraphy, minerals, and water. This compilation encompasses data from states and territories, as well as less readily available borehole logs and interpretations of stratigraphy.</div><div>&nbsp;</div><div>This study was conducted as part of the National Groundwater Systems (NGS) Project within the Australian Government's Exploring for the Future (EFTF) program. Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to net zero emissions, strong, sustainable resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government. More information is available at http://www.ga.gov.au/eftf and https://www.eftf.ga.gov.au/national-groundwater-systems.</div><div>&nbsp;</div><div>As our understanding of Australian groundwater systems expands across states and territories, including legacy data from the 1970s and recent studies, it becomes evident that there is significant geological complexity and spatial variability in stratigraphic and hydrostratigraphic units nationwide. Recognising this complexity, there is a need to standardise diverse datasets, including borehole location and elevation, as well as variations in depth and nomenclature of stratigraphic picks. This standardisation aims to create a consistent, continent-wide stratigraphic framework for better understanding groundwater system for effective long-term water resource management and integrated resource assessments.</div><div>&nbsp;</div><div>This continental-scale compilation consolidates borehole data from 53 sources, refining 1,117,693 formation picks to 1,010,483 unique records from 171,396 boreholes across Australia. It provides a consistent framework for interpreting various datasets, enhancing 3D aquifer geometry and connectivity. Each data source's reliability is weighted, prioritising the most confident interpretations. Geological units conform to the Australian Stratigraphic Units Database (ASUD) for efficient updates. Regular updates are necessary to accommodate evolving information. Borehole surveys and dip measurements are excluded. As a result, stratigraphic picks are not adjusted for deviation, potentially impacting true vertical depth in deviated boreholes.</div><div>&nbsp;</div><div>This dataset provides:</div><div>ABSUC_v2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;Australian stratigraphic unit compilation dataset (ABSUC)</div><div>ABSUC_v2_TOP&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subset of preferred top picks from the ABSUC_v2 dataset</div><div>ABSUC_v2_BASE&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subset of preferred base picks from the ABSUC_v2 dataset</div><div>ABSUC_BOREHOLE_v2&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;ABSUC Borehole collar dataset</div><div>ASUD_2023&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A subset of the Australia Stratigraphic Units Database (ASUD)</div><div>&nbsp;</div><div>Utilising this uniform compilation of stratigraphic units, enhancements have been made to the geological and hydrogeological surfaces of the Great Artesian Basin, Lake Eyre Basin and Centralian Superbasin. This compilation is instrumental in mapping various regional groundwater systems and other resources throughout the continent. Furthermore, it offers a standardised approach to mapping regional geology, providing a consistent foundation for comprehensive resource impact assessments.</div>