Seabed
Type of resources
Keywords
Publication year
Service types
Topics
-
A benthic sediment sampling survey (GA0356) to the nearshore areas of outer Darwin Harbour was undertaken in the period from 03 July to 14 September 2016. Partners involved in the survey included Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Department of Environment and Natural Resources within the Northern Territory Government (NT DENR) (formerly the Department of Land and Resource Management (DLRM)). This survey forms part of a four year (2014-2018) science program aimed at improving knowledge about the marine environments in the regions around Darwin and Bynoe Harbour’s through the collection and collation of baseline data that will enable the creation of thematic habitat maps to underpin marine resource management decisions. This project is being led by the Northern Territory Government and is supported by the INPEX-led Ichthys LNG Project, in collaboration with - and co-investment from GA and AIMS. The program builds upon an NT Government project (2011-2011) which saw the collection of baseline data (multibeam echosounder data, sediment samples and video transects) from inner Darwin Harbour (Siwabessy et al. 2015). This dataset comprises Total sediment metabolism, %carbonate, organic isotope (C and N) and organic and inorganic element data from seabed sediments. Radke, L., Smit, N., Li, J., Nicholas, T., Picard, K. 2017. Outer Darwin Harbour Shallow Water Sediment Survey 2016: GA0356 – Post-survey report. Record 2017/06. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2017.006 This research was funded by the INPEX-led Ichthys LNG Project via the Northern Territory (NT) Government Department of Land Resource Management (DLRM) (now the Department of Environment and Natural Resources (DENR)), and co-investment from Geoscience Australia (GA) and Australian Institute of Marine Science (AIMS). We are grateful to the following agencies for providing boats and staff, and to the following personal for help with sample acquisition: NT DENR (Danny Low Choy and Rachel Groome), NT Fisheries (Wayne Baldwin, Quentin Allsop, Shane Penny, Chris Errily, Sean Fitzpatrick and Mark Grubert), NT Parks and Wildlife (Ray Chatto, Stewart Weorle, and Luke McLaren) and the Larrakia Rangers (Nelson Tinoco, Kyle Lewfat, Alan Mummery and Steven Dawson). Special thanks to the skippers Danny Low Choy, Wayne Baldwin, Stewart Weorle and Luke McLaren whose seamanship strongly guided the execution of this survey. AIMS generously allowed use of the aquarium and laboratory at the Arafura Timor Sea Research Facility, and Simon Harries and Kirsty McAllister helped with the setup. We would also like to acknowledge and thank GA colleagues including: Matt Carey, Ian Atkinson and Craig Wintle (Engineering and Applied Scientific Services) for the organisation of field supplies and the design of the new core incubation set-up. This dataset is published with the permission of the CEO, Geoscience Australia
-
This resource includes bathymetry data acquired during the Submarine Cape Range Canyons bathymetry survey using Kongsberg EM302 and EM710 multibeam sonar systems. The Seamounts, Canyons and Reefs of the Coral Sea bathymetry survey was led by Dr. Rachel Przeslawski (Geoscience Australia) with a team of scientists from Geoscience Australia, Curtin University, Western Australian Museum and Scripps Institution of Oceanography aboard the Schmidt Ocean Institute (SOI) RV Falkor from the 8th of March to the 8th of April 2020. The primary objective of this survey was to map unexplored submarine canyons in the Gascoyne Marine Park. Submarine canyons are crucial habitats for a variety of biota and understanding their geometry, depth and species diversity is underpinned by high resolution bathymetry data. The bathymetry data collected in this survey can assist with scientific research, marine park management and understanding Australia’s marine estate. This dataset contains a 64m and a 16m, for water depths shallower than 2560m resolution 32-bit geotiff of the Cape Range and Cloates Canyons area produced from the processed EM302 and EM710 bathymetry data combined. This dataset is not to be used for navigational purposes. This dataset is published with the permission of the CEO, Geoscience Australia.
-
The Geoscience Australia’s Semi-automated Morphological Mapping Tools (GA-SaMMT) were developed as ArcGIS Pro Python tools using Python 3+ to map ten bathymetric high and eight bathymetric low Morphology Features (defined in Dove et al., 2020; cf. Nanson et al., 2023). These tools comprise seven toolboxes: 1. The BathymetricHigh.pyt toolbox is used to map bathymetric high features, and includes three tools: (i) TPI Tool Bathymetric High; (ii) TPI LMI Tool Bathymetric High; (iii) and Openness Tool Bathymetric High. 2. The BathymetricLow.pyt toolbox is used to map bathymetric low features, and includes three tools: (i) TPI Tool Bathymetric Low; (ii) TPI CI Tool Bathymetric Low; and (iii) Openness Tool Bathymetric Low. 3. The AddAttributes.pyt toolbox is used to calculate attributes for bathymetric high and low features, and includes six tools: (i) Add Shape Attributes High Tool; (ii) Add Shape Attributes Low Tool; (iii) Add Topographic Attributes High Tool; (iv) Add Topographic Attributes Low Tool; (v) Add Profile Attributes High Tool; and (vi) Add Profile Attributes Low Tool. 4. The AddAttributesFast.pyt toolbox is also used to calculate attributes for bathymetric high and low features, and has the advantage (over the AddAttributes.pyt toolbox) of having multiprocessing capabilities. This version of the add attributes toolbox contains four tools: (i) Add Shape Attributes High Tool Fast; (ii) Add Shape Attributes Low Tool Fast; (iii) Add Profile Attributes High Tool Fast; and (iv) Add Profile Attributes Low Tool Fast. The two add topographic attributes tools do not require multiprocessing capabilities to improve their performance. 5. The ClassificationFeature.pyt toolbox is used to classify bathymetric high and low features into Morphological Feature categories defined in Dove et al. (2020), and includes two tools: (i) Classify Bathymetric High Features; and (ii) Classify Bathymetric Low Features. 6. The Accessory_Tools.pyt toolbox provides four accessory tools to help the mapping processes: (i) Merge Connected Features Tool; (ii) Connect Nearby Linear Features Tool; (iii) Connect Nearby Linear HF Features Tool; and (iv) Update Feature Boundary Tool. 7. The Surface.pyt toolbox is used to map three classes of Morphological surfaces (Dove et al., 2020), and includes two tools: (i) Morphological Surface Tool Bathymetry; and (ii) Morphological Surface Tool Slope. The system and data format requirements of these ArcGIS tools are described in the tutorials and user guide that accompany the tools, which also include sampled data and step-by-step examples of their application. Further details of these tools, including their description, graphic illustrations and usages, and python code examples, are also available in their metadata. These tools have been applied to many study areas with real world applications, including those published in Huang et al. (2023) which should be used as the key reference to the GA-SaMMT. Dove, D., Nanson, R., Bjarnadóttir, L., Guinan, J., Gafeira, J., Post, A., Dolan, M.; Stewart, H.; Arosio, R, Scott, G. (October, 2020). A two-part seabed geomorphology classification scheme (v.2); Part 1: morphology features glossary. Zenodo. http://doi.org/10.5281/zenodo.4075248 Nanson, R., Arosio, R., Gafeira, J., McNeil, M., Dove, D., Bjarnadóttir, L., Dolan, M., Guinan, J., Post, A., Webb, J., & Nichol, S. (2023). A two-part seabed geomorphology classification scheme; Part 2: Geomorphology classification framework and glossary (Version 1.0) (1.0). Zenodo. https://doi.org/10.5281/zenodo.7804019 Huang, Z., Nanson, R., McNeil, M., Wenderlich, M., Gafeira, J., Post, A, Nichol, S., 2023. Rule-based semi-automated tools for mapping seabed morphology from bathymetry data, Frontiers in Marine Science, 10, 1236788.
-
This document presents an overview of the AusSeabed 2022/23 Work Plan created by the AusSeabed Steering Committee and endorsed by the AusSeabed Executive Board. The work plan builds on the great work delivered in 2021/22 (see the Annual Highlights Report & Annual Progress Report). For more information on the direction and vision of the program, please refer to the AusSeabed Strategy. For further information about AusSeabed see <a href="https://www.ausseabed.gov.au">https://www.ausseabed.gov.au</a>
-
<b>This record was superseded on 11/11/2022 with approval from Director, National Seabed Mapping as it has been superseded by eCat 147191</b> Seabed mapping data collected using a Kongsberg 2040C multibeam sonar system aboard research vessel MVYolla including bathymetry (2 metre resolution), backscatter (1metre resolution), watercolumn and preliminary hard bottom classification. Seabed mapping in Apollo Marine Park with 114 square kilometres of continuous seabed mapping conducted by Deakin University in partnership with iXblue for Parks Australia.
-
This dataset describes the seabed morphological features of an area in the South-west Corner Marine Park. The area is within the National Park Zone and adjacent Special Purpose Zone of the Capes region of the marine park. Multibeam bathymetry data of the area was collected during March 2020 and January-February 2021 by Geoscience Australia. The seabed morphological features of the area were mapped using semi-automatic seabed morphology mapping ArcGIS python tools developed by Geoscience Australia. As the result of the mapping, this dataset contains five bathymetric high features: Bank, Cone, Hummock, Mound and Ridge, and one morphology surface feature: Plane, defined in Dove et al. (2020). Dove, D., Nanson, R., Bjarnadóttir, L., Guinan, J., Gafeira, J., Post, A., Dolan, M.; Stewart, H.; Arosio, R, Scott, G. (October, 2020). A two-part seabed geomorphology classification scheme (v.2); Part 1: morphology features glossary. Zenodo. http://doi.org/10.5281/zenodo.4075248
-
<div>The Australian Sub-bottom Profiling Guidelines were developed by the AusSeabed community to establish a standardised approach to the acquisition of sub-bottom profiler data in an Australian context. They complement a suite of ocean best practice guidelines developed by the AusSeabed community including the <a href="https://pid.geoscience.gov.au/dataset/ga/121571">Australian Multibeam Guidelines</a> (eCat Record 121571) and the Australian <a href="https://repository.oceanbestpractices.org/handle/11329/2080">Satellite Derived Bathymetry Guidelines</a>.</div><div>The guidelines provide recommended procedures for data acquisition, quality checking and data submission to the AusSeabed marine data portal. They were initially designed for use by the Australian Hydrographic Office Hydroscheme Industry Partnership Program (HIPP) to enable the acquisition of standardised, efficient and effective sub-bottom profile data for general seabed characterisation and collection of baseline data. Additionally, the guidelines may be used by any agency or party collecting seabed geophysical data in Australia’s marine jurisdiction for a range of use cases. </div><div><br></div><div>The guidelines include a broad examination of data acquisition, basic processing for quality checking, metadata description, and guidance for data submission to AusSeabed. They do not include prescriptive equipment-specific hardware and software specifications, detailed user-defined settings or instrument preparation activities such as bench/workshop tests, personnel requirements, or provide survey costing information.</div><div><br></div>
-
Established in 2018, AusSeabed is a collaborative national seabed mapping initiative focused on delivering freely accessible seabed mapping data and coordinating efforts to map the gaps across the Australian maritime region of responsibility. AusSeabed is driven by a cross-sector steering committee bringing together organisations from the government, academia and private sectors to ensure an inclusive and diverse representation of the seabed mapping community. The Annual Highlights Report presents the key achievements of the AusSeabed program over the 2021/22 financial year. The report is structured in five sections, the first four are aligned to the 2021/22 work plan objectives and the fifth highlights engagement activities over the past year.
-
A benthic sediment sampling survey (GA0356) to the nearshore areas of outer Darwin Harbour was undertaken in the period from 03 July to 14 September 2016. Partners involved in the survey included Geoscience Australia (GA), the Australian Institute of Marine Science (AIMS) and the Department of Environment and Natural Resources within the Northern Territory Government (NT DENR) (formerly the Department of Land and Resource Management (DLRM)). This survey forms part of a four year (2014-2018) science program aimed at improving knowledge about the marine environments in the regions around Darwin and Bynoe Harbour’s through the collection and collation of baseline data that will enable the creation of thematic habitat maps to underpin marine resource management decisions. This project is being led by the Northern Territory Government and is supported by the INPEX-led Ichthys LNG Project, in collaboration with - and co-investment from GA and AIMS. The program builds upon an NT Government project (2011-2011) which saw the collection of baseline data (multibeam echosounder data, sediment samples and video transects) from inner Darwin Harbour. This dataset comprises total oxygen uptake and total carbon dioxide flux measurements from core incubation experiments on seabed sediments. Radke, L., Smit, N., Li, J., Nicholas, T., Picard, K. 2017. Outer Darwin Harbour Shallow Water Sediment Survey 2016: GA0356 – Post-survey report. Record 2017/06. Geoscience Australia, Canberra. http://dx.doi.org/10.11636/Record.2017.006 This research was funded by the INPEX-led Ichthys LNG Project via the Northern Territory (NT) Government Department of Land Resource Management (DLRM) (now the Department of Environment and Natural Resources (DENR)), and co-investment from Geoscience Australia (GA) and Australian Institute of Marine Science (AIMS). We are grateful to the following agencies for providing boats and staff, and to the following personal for help with sample acquisition: NT DENR (Danny Low Choy and Rachel Groome), NT Fisheries (Wayne Baldwin, Quentin Allsop, Shane Penny, Chris Errily, Sean Fitzpatrick and Mark Grubert), NT Parks and Wildlife (Ray Chatto, Stewart Weorle, and Luke McLaren) and the Larrakia Rangers (Nelson Tinoco, Kyle Lewfat, Alan Mummery and Steven Dawson). Special thanks to the skippers Danny Low Choy, Wayne Baldwin, Stewart Weorle and Luke McLaren whose seamanship strongly guided the execution of this survey. AIMS generously allowed use of the aquarium and laboratory at the Arafura Timor Sea Research Facility, and Simon Harries and Kirsty McAllister helped with the setup. We would also like to acknowledge and thank GA colleagues including: Matt Carey, Ian Atkinson and Craig Wintle (Engineering and Applied Scientific Services) for the organisation of field supplies and the design of the new core incubation set-up. This dataset is published with the permission of the CEO, Geoscience Australia
-
Before planning commercial activities in Australian waters, pre-competitive data is essential to characterise the seabed environment. AusSeabed is a collaborative initiative that brings together publicly available seabed data and coordinates future data collection. AusSeabed is led by Geoscience Australia and involves partners from across Commonwealth and State governments, academia, and private industry. All data is published through the AusSeabed data portal. This includes survey data collected by government agencies, research institutions, and private industry as well as seamless regional and national gridded bathymetric surfaces. The portal also contains metadata for unpublished surveys as well as contextual environmental data, including geomorphology, sedimentology, geophysical, and coastal datasets. The data in AusSeabed is crucial for offshore energy development. Bathymetric surfaces are needed for oceanographic models that are used to assess wave and tidal energy, as well as for site assessments and marine spatial planning. Beyond those immediate uses, AusSeabed data has wide-ranging applications and benefits across multiple ocean sectors, including industry (offshore energy, fishing, and tourism); Defence, marine park management; environmental impact assessments; hazard modelling (tsunami and storm surge); and maritime boundary definition. As part of the collaboration, the AusSeabed community has developed a Survey Coordination Tool, where users are invited to share broad areas of interest, submit direct requests for surveys to be conducted by the Australian Hydrographic Office’s Hydroscheme Industry Partnership Program (HIPP), or publish their own survey plans. The Areas of Interest are used by government and research agencies to help prioritise new data collection and the processing of legacy bathymetric data that is currently unavailable for reuse. As a community-guided initiative, AusSeabed is a central hub for bathymetric quality guidelines, shared activities, and news. If you’re working on or above Australia’s seabed, you need to get involved. Abstract/Poster presented at the 2024 ICOE