From 1 - 10 / 130
  • Across Australia, groundwater is a vital resource that supports and strengthens communities, culture, the environment and numerous industries. Movement of groundwater is complicated, taking place horizontally, vertically and across different timescales from weeks to millions of years. It is affected by changes in climate, human use, and geological complexities such as the type, geometry and distribution of rocks. Understanding how all these factors interact is known as a groundwater conceptual model and it is an important first step. This groundwater conceptualisation includes the Galilee Basin and the overlying Eromanga and Lake Eyre basins and other Cenozoic units as well as surface-groundwater interactions. Figure 1 shows the locations of the cross sections used to conceptualise groundwater in the Galilee Basin region. In the Galilee Basin extended region this includes 1 aquifer in the Lake Eyre Basin, 5 aquifers in the Eromanga Basin and 3 aquifers in the Galilee Basin (Wainman et al., 2023a, b). Confidence for each aquifer was calculated for both salinity and water levels (Hostetler et al., 2023a, b, c). The confidence for each aquifer was added to show the overall confidence for the basin. The level of knowledge across all aquifers are moderate to low. The groundwater conceptualisations summarise the groundwater flow and potential connectivity between aquifers. Figures also show the distribution of the aquifers and aquitards, average salinity, potential aquifer yield and confidence over an area of 50 km along the cross section lines.

  • Publicly available baseline surface water data are compiled to provide a common information base for resource development and regulatory decisions in the Adavale Basin region. This data guide captures existing knowledge of the catchments and watercourses overlying the Adavale Basin, including streamflow quality and quantity, inundation, and climatological data. The Adavale Basin underlies 3 main surface water catchments that contribute to Cooper Creek, including the Barcoo, Bulloo and Warrego rivers. The Adavale Basin geological boundary also intersects the upper parts of the Paroo River catchment and a small part of the Condamine-Balonne catchment. The data on the catchments overlying the Adavale Basin have been summarised at a point in time to inform decisions on resource development activities. Key data sources are the Water Monitoring Information Portal (Queensland Government), Water Data Online (Bureau of Meteorology), DEA Water Observations (Geoscience Australia) and Terrestrial Ecosystem Research Network.

  • Publicly available geology data are compiled to provide a common information base for resource development, environmental and regulatory decisions in the Cooper Basin region. This data guide gives examples of how these data can be used and supports the data package that provides the existing knowledge of the key geological intervals of the Cooper Basin and the overlying Eromanga and Lake Eyre basins. The key geological intervals identified by the Trusted Environmental and Geological Information (TEGI) Program for resource assessment and groundwater system characterisation are termed play intervals and hydrostratigraphic intervals respectively. The Cooper Basin includes 7 plays, which are consolidated into 1 hydrostratigraphic interval. Overlying the Cooper Basin are 9 play intervals of the Eromanga Basin, which are consolidated into 7 hydrostratigraphic intervals and 1 Cenozoic play interval and 1 hydrostratigraphic interval for the Lake Eyre Basin. The geological groups and formations included in the play and hydrostratigraphic intervals are summarised in the stratigraphic charts of Wainman et al. (2023). Gross depositional, depth structure and thickness maps are provided with 3D model and cross-sections summarising the geology of the Cooper Basin and the overlying basins. The mapped depths and thicknesses of the key intervals are used to inform resource assessments and provide the framework for assigning groundwater data to hydrostratigraphic intervals.

  • Publicly available baseline surface water data are compiled to provide a common information base for resource development and regulatory decisions in the north Bowen Basin region. This data guide captures existing knowledge of the catchments and watercourses overlying the north Bowen Basin, including streamflow quality and quantity, inundation and climatological data. Most of the north Bowen Basin falls to the east of the Great Dividing Range within the Fitzroy River catchment. The basin also includes part of the Burdekin River catchment and small parts of the coastal catchments of Styx and Burnett river catchments. The data on the catchments overlying the north Bowen Basin have been summarised at a point in time to inform decisions on resource development activities. Key data sources are available from the Water Monitoring Information Portal (Queensland Government), Water Data Online (Bureau of Meteorology), DEA Water Observations (Geoscience Australia) and Terrestrial Ecosystem Research Network.

  • Statements of existing knowledge are compiled for known mineral, coal, hydrocarbon and carbon capture and storage (CCS) resources and reserves in the Adavale Basin. This data guide illustrates the current understanding of the distribution of these key resource types within the Adavale Basin region based on trusted information sources. It provides important contextual information on the Adavale Basin and where additional details on discovered resources can be found. So far, mineral deposits have not been found in the Adavale Basin. There are no coal deposits found in the basin itself, but 6 large coal deposits exist in the overlying basins in the Adavale Basin region. Historically, some small conventional gas resources have been found in the basin. Currently, there are no commercial reserves or available resources identified in the Adavale Basin itself. There are no active or planned carbon capture and storage (CCS) projects in the Adavale basin.

  • Across Australia, groundwater is a vital resource that supports and strengthens communities, culture, the environment and numerous industries. Movement of groundwater is complicated, taking place horizontally, vertically and across different timescales from weeks to millions of years. It is affected by changes in climate, human use and geological complexities such as the type, geometry and distribution of rocks. Understanding how all these factors interact is known as a groundwater conceptual model and it is an important first step. This groundwater conceptualisation includes the Cooper Basin and the overlying Eromanga and Lake Eyre basins as well as surface-groundwater interactions. Figure 1 shows the locations of the cross sections used to conceptualise groundwater in the Cooper Basin region. In the Cooper Basin this includes 1 aquifer in the Lake Eyre Basin, 5 aquifers in the Eromanga Basin and 1 aquifer in the Cooper Basin (Wainman et al., 2023a, b). Additional aquifers in the Permian sequence have not been included in this assessment, as they are yet to be fully investigated (Evans et al., 2020). Confidence for each aquifer was calculated for both salinity and water levels (Gouramanis et al., 2023a, b, c). The confidence for each aquifer was added to show the overall confidence for the basin. The level of knowledge across all aquifer is moderate to low. The groundwater conceptualisations summarises the groundwater flow and potential connectivity between aquifers. Figures also show the distribution of the aquifers and aquitards, average salinity, potential aquifer yield and confidence over an area of 50 km along the cross section lines.

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Galilee Basin region. This data guide gives examples of how these data can be used. The data package included with this data guide captures existing knowledge of Galilee Basin aquifers and their properties, including salinity, water levels, resource size, potential aquifer yield and surface water - groundwater interactions. The methods used to derive these data for all Galilee Basin aquifers in the Galilee Basin region are outlined in the associated metadata files. These are described in groundwater conceptual models (Hostetler et al., 2023). The Galilee Basin includes 3 broadly defined aquifer intervals: from deepest to shallowest, these are the Joe Joe Group, Betts Creek beds and Clematis aquifers. Compiled data have been assigned to these intervals and used to characterise groundwater systems at the basin scale. The data were compiled for a point-in-time to inform decisions on potential resource developments in the Basin. The available historical groundwater data can be used to assess the potential effects on groundwater. The data can also be used for other purposes, such as exploring unallocated groundwater resource potential. Data to January 2022 were used for this compilation.

  • Publicly available data was compiled to provide a common information base for resource development, and environmental and regulatory decisions in the Eromanga Basin. This data guide gives examples of how these data can be used to create the components of a workflow to identify geological storage of carbon dioxide (CO2) opportunities. The data guide is designed to support the data package that provide insights on the geological storage of CO2 in the Eromanga Basin. The geological storage of CO2 assessment for the Eromanga Basin overlying the Cooper, Adavale and Galilee basins encompasses 6 of the 9 geological intervals, termed plays – these intervals have been defined by Wainman et al. (2023a, b). The assessment captures data from the Great Artesian Basin geological and hydrogeological surfaces update (Vizy and Rollet, 2022), Queensland Petroleum Exploration Database (QPED) from the Geological Survey of Queensland (GSQ) Open Data Portal (2020a), the Petroleum Exploration and Production System of South Australia (PEPS, 2021); Bradshaw et al. (2009) and Draper (2002) along with the scientific literature to inform the 4 components required for a prospective geological storage of CO2 system. These datasets are used to map out gross depositional environments and their geological properties relevant for geological storage of CO2 assessments. From these datasets, the following properties were evaluated and mapped across the basin: injectivity, storage efficiency, containment and structural complexity. The data are compiled at a point in time to inform decisions on resource development opportunities. The data guide outlines the play-based workflow for assessing geological storage of CO2 prospectivity. Each of the elements required for a prospective geological storage of CO2 system are explained and mapped. These data were merged and spatially multiplied to show the relative assessment of geological storage of CO2 prospectivity across the basin, both at a play interval and basin scale. As an example of assessments contained within the data package, this data guide showcases the geological storage of CO2 prospectivity of the Namur-Murta Play interval.

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Adavale Basin region. This data guide gives examples of how these data can be used. The data package included with this data guide captures existing knowledge of Eromanga Basin aquifers in the Adavale Basin region and their properties, including salinity, water levels, resource size, potential aquifer yield and surface water interactions. The methods used to derive these data for all Eromanga Basin aquifers in the Adavale Basin region are outlined in the associated metadata files. These are described in groundwater conceptual models (Gouramanis et al., 2023). The Eromanga Basin overlying the Adavale Basin includes 5 broadly defined aquifer intervals: from deepest to shallowest, these are the Poolowanna, Hutton, Adori, Cadna-owie–Hooray and Winton-Mackunda aquifers. Compiled data are assigned to these intervals and used to characterise groundwater systems at the basin scale. The data are compiled for a point-in-time to inform decisions on potential resource developments in the Basin. The available historical groundwater data can be used to assess the potential effects on groundwater. The data can also be used for other purposes, such as exploring unallocated groundwater resource potential. Data to January 2022 are used for this compilation.

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Galilee Basin region. This data guide gives examples of how these data can be used. The data package included with this data guide captures existing knowledge of Lake Eyre Basin aquifers in the Galilee Basin region and their properties, including salinity, water levels, resource size, potential aquifer yield and indicators of surface water interactions. The methods used to derive these data for the Lake Eyre Basin aquifer in the Galilee Basin region are outlined in the associated metadata files. These are described in groundwater conceptualisation models (Hostetler et al., 2023). The Lake Eyre Basin overlying the Galilee Basin includes one broadly defined aquifer that includes multiple aquifer systems that are defined as Cenozoic aquifers. Compiled data was assigned to this interval and were used to characterise groundwater systems at the basin scale. The data are compiled for a point-in-time to inform decisions on resource development activities Basin. The available historical groundwater data can be used to assess the potential effects on groundwater for different development scenarios. The data can also be used for other purposes, such as exploring unallocated groundwater resource potential. Data to January 2022 are used for this compilation.