South Nicholson
Type of resources
Keywords
Publication year
Service types
Topics
-
<p>Exploring for the Future (EFTF) is a four year $100.5 million initiative by the Australian Government that aims to boost northern Australia's attractiveness as a destination for investment in resource exploration. As part of this program, Geoscience Australia has been tasked with gathering new pre-competitive data and information concerning potential mineral, energy and groundwater resources concealed beneath the surface, on an unprecedented scale. To ensure the program has the greatest impact Geoscience Australia will use innovative techniques in greenfield areas where the resource potential is completely unknown at a semi-continental scale. <p>A major EFTF output is the acquisition of deep crustal seismic reflection data. The first tranche of this was completed in early August 2017 in the region between the southern McArthur Basin to the Mt Isa western succession, crossing the South Nicholson Basin and Murphy Province. Prior to this survey, the region contained no seismic data and minimal well data. <p>This new seismic data will support exploration activities by providing a better understanding of the basin and basement architecture and structural evolution of the region, and assist in identifying geological terrains with resource potential. The preliminary processed data was released at the Annual Geoscience Exploration Seminar in March 2018 (Henson et al., 2018). This record presents the interpreted data alongside a geological summary of the region including the McArthur Basin, South Nicholson Basin and Mount Isa Orogen and provides a baseline for further studies in the region including the identification of a new sub-basin and presentation of current knowledge of the stratigraphy and geochemistry. <p>The new seismic reflection data acquired over the South Nicholson Basin as part of the Exploring for the Future program has outlined many areas of future opportunity. Geoscience Australia is currently pursuing an exciting program building upon previous work in the region, including extensive geochemical and geochronological studies aiming to build a greater understanding of the stratigraphy imaged by the seismic data. Further, our work in this region has already demonstrated the complicated and poorly understood nature of the stratigraphy and structural relationships within the region.
-
The South Nicholson region of northwest Queensland and the Northern Territory is the focus of a regional hydrocarbon prospectivity assessment being undertaken by the Exploring for the Future (EFTF) program, an Australian Government initiative dedicated to increasing investment in resource exploration in northern Australia. This data release provides data from new digital photography, X-ray Computerised Tomography (XCT) scanning, unconfined compressive strength (UCS) testing and laboratory ultrasonic testing for 14 samples from stratigraphic and exploration wells drilled into the South Nicholson Basin and Lawn Hill Platform in the South Nicholson region described in Jarrett et al (2020). These samples were analysed at CSIRO Geomechanics and Geophysics Laboratory in Perth during May and June 2020.
-
This Record presents twelve new zircon U-Pb geochronological results from the South Nicholson region, conducted on Geoscience Australia’s Sensitive High Resolution Ion Micro Probe (SHRIMP), as part of the Commonwealth Government’s Exploring for the Future (EFTF) program, an initiative to better understand the mineral, energy and groundwater potential of northern Australia. These data will facilitate greater understanding of the geological evolution of the South Nicholson region, a vast and underexplored region extending across north-eastern Northern Territory and far north-western Queensland. Samples were collected from across the South Nicholson region including MOUNT DRUMMOND, CALVERT HILLS, BRUNETTE DOWNS (NT), LAWN HILL and CAMOOWEAL (QLD) 250K mapsheets. Four samples are from outcrop and eight samples from six stratigraphic and exploration drillholes. Samples were collected from the Paleoproterozoic Murphy Province and from overlying successions of the Paleoproterozoic Benmara Group and the Mesoproterozoic South Nicholson Group. Several samples from drillholes, have stratigraphic affinities that are uncertain and speculative.
-
The Exploring for the Future Program (EFTF) is a $100.5 million four year, federally funded initiative to better characterise the mineral, energy and groundwater potential of northern Australia. A key focus area of the initiative is the South Nicholson region, situated across the Northern Territory and Queensland border. The South Nicholson region is located between two highly prospective provinces, the greater McArthur Basin in the Northern Territory, the Lawn Hill Platform and the Mount Isa Province in Queensland–Northern Territory, which both have demonstrated hydrocarbon and base metal resources. In contrast, the South Nicholson region is not well understood geologically, is mostly undercover with limited well data, and prior to EFTF contained limited seismic coverage. Re–Os analyses in this study were undertaken to complement seismic data, U–Pb geochronology and geochemistry data to better understand the geological evolution and resource potential of the South Nicholson region. Five organic carbon bearing sedimentary samples from drillholes BMR Ranken 1, NTGS00/1, DDH 83/1 and DDH 83/4 located across the South Nicholson region were analysed for whole rock Re–Os. The aim of the analyses was to better constrain the depositional age of basin units in the region, and to potentially provide insights into the timing of post-depositional processes such as fluid events and hydrocarbon generation and/or migration. Samples belong to the Mesoproterozoic South Nicholson Group, Paleoproterozoic Fickling and McNamara groups, and the Neoproterozoic to Devonian Georgina Basin. Samples were analysed at the University of Alberta, Canada.
-
<p>This Record presents the results of 26 new zircon U-Pb isotopic analyses, conducted on Geoscience Australia’s Sensitive High Resolution Ion Micro Probe (SHRIMP2e), under the Commonwealth Government’s Exploring for the Future (EFTF) program, a $100.5 million, four year, initiative to better understand the mineral, energy and groundwater potential across northern Australia. <p>These new data, determined on sedimentary and volcanic rocks, were collected from across the South Nicholson region, located in the north-eastern Northern Territory. The South Nicholson region is geographically located between two highly prospective geological provinces, the greater McArthur Basin in the Northern Territory and the Mount Isa Province in Queensland, regions noted for their hydrocarbon potential and world-class base-metal endowment. <p>The South Nicholson region has been sparsely investigated by modern geological investigations, and, as such, these new SHRIMP U-Pb data, in concert with other complementary EFTF geochronological, geochemical and geophysical datasets from the region (e.g. Anderson et al., 2019; Carr et al., 2019; Ley-Cooper and Brodie, 2019; Jarrett et al., 2019) will place important geological constraints on the geological evolution, the timing of deposition, sedimentary processes, basin architecture and evolution of the South Nicholson region and, arguably most significantly, provide new improved lithostratigraphic and chronostratigraphic correlations with the adjacent highly prospective Proterozoic Basins. <p>Such geological correlations are critical for reducing exploration risk, improve resource prospectivity and enabling targeted ‘greenfield’ resource exploration activities, a tangible key objective under the Exploring for the Future initiative.
-
Exploring for the Future (EFTF) is a four-year (2016-20) geoscience data and information acquisition program that aims to better understand on a regional scale the potential mineral, energy and groundwater resources concealed under cover in northern Australia and parts of South Australia. Hydrogeochemical surveys utilise groundwater as a passive sampling medium to reveal the chemistry of the underlying geology including hidden mineralisation. These surveys also potentially provide input into regional baseline groundwater datasets that can inform environmental monitoring and decision making. Geoscience Australia, as part of the Australian Government’s EFTF program, undertook an extensive groundwater sampling survey in collaboration with the Northern Territory Geological Survey and the Geological Survey of Queensland. During the 2017, 2018 and 2019 dry season, 224 groundwater samples (including field duplicate samples) were collected from 203 pastoral and water supply bores in the Tennant Creek-Mt Isa EFTF focus area of the Northern Territory and Queensland. An additional 38 groundwater samples collected during the 2013 dry season in the Lake Woods region from 35 bores are included in this release as they originate from within the focus area. The area was targeted to evaluate its mineral potential with respect to iron oxide copper-gold, sediment-hosted lead-zinc-silver and Cu-Co, and/or lithium-boron-potash mineral systems, among others. The 2017-2019 surveys were conducted across 21 weeks of fieldwork and sampled groundwater for a comprehensive suite of hydrogeochemical parameters, including isotopes, analysed over subsequent months. The present data release includes information and atlas maps of: 1) sampling sites; 2) physicochemical parameters (EC, pH, Eh, DO and T) of groundwater measured in the field; 3) field measurements of total alkalinity (HCO3-), dissolved sulfide (S2-), and ferrous iron (Fe2+); 4) major cation and anion results; 5) trace element concentrations; 6) isotopic results of water (δ18O and δ2H), DIC (δ13C), dissolved sulfate (δ34S and δ18O), dissolved strontium (87Sr/86Sr), and dissolved lead (204Pb, 206Pb, 207Pb, and 208Pb) isotopes; 7) dissolved hydrocarbon VFAs, BTEX, and methane concentrations, as well as methane isotopes (δ13C and δ2H); and 8) atlas of hydrogeochemical maps representing the spatial distribution of these parameters. Pending analyses include: CFCs and SF6; tritium; Cu isotopes; and noble gas concentrations (Ar, Kr, Xe, Ne, and 4He) and 3He/4He ratio. This data release (current as of July 2021) is the second in a series of staged releases and interpretations from the Northern Australia Hydrogeochemical Survey. It augments and revises the first data release, which it therefore supersedes. Relevant data, information and images are available through the GA website (https://pid.geoscience.gov.au/dataset/ga/133388) and GA’s EFTF portal (https://portal.ga.gov.au/).
-
<div>New SHRIMP U-Pb detrital zircon geochronology on Mesoproterozoic and Paleoproterozoic siliciclastic rocks from the South Nicholson region, in concert with recently acquired complementary regional geophysical datasets, has enabled comprehensive revision of the regional Proterozoic tectono-stratigraphy. The identification of analogous detrital zircon spectra between units deposited in half-graben hanging walls of major ENE-WSW trending extensional faults, the Benmara, Bauhinia, and Maloney-Mitchiebo faults, offers compelling evidence for regional tectono-stratigraphic correlation. Units sampled from the hanging walls of these faults are characterised by immature proximal lithofacies and host a small yet persistent population of <em>ca</em> 1640–1650 Ma aged zircon and lack Mesoproterozoic detritus, consistent with deposition coincident with extension during the River Extension event at <em>ca</em> 1640 Ma, an event previously identified from the Lawn Hill Platform in western Queensland. This finding suggests the hanging wall sequences are chrono-stratigraphically equivalent to the highly prospective sedimentary rocks of the Isa Superbasin, host to world-class sediment-hosted base metal deposits across western Queensland and north-eastern Northern Territory. Subsequent inversion of the extensional faults, resulted in development of south-verging thrusts, and exhumation of late Paleoproterozoic hanging wall siliciclastic rocks through overlying Mesoproterozoic South Nicholson Group rocks as fault propagated roll-over anticlines. These geochronology data and interpretations necessitate revision of the stratigraphy and the renaming of a number of stratigraphic units in the South Nicholson region. Accordingly, the distribution of the highly prospective late Paleoproterozoic units of the McArthur Basin, Lawn Hill Platform and Mount Isa Province is greatly expanded across the South Nicholson region. These findings imply that the previously underexplored South Nicholson region is a highly prospective greenfield for energy and mineral resources.</div> <b>Citation:</b> C. J. Carson, N. Kositcin, J. R. Anderson & P. A. Henson (2023) A revised Proterozoic tectono-stratigraphy of the South Nicholson region, Northern Territory, Australia—insights from SHRIMP U–Pb detrital zircon geochronology, <i>Australian Journal of Earth Sciences,</i> DOI: 10.1080/08120099.2023.2264355
-
<p>In this study, a total of 53 surface outcrop samples were analysed for both inorganic and organic whole-rock geochemistry as part of Exploring for the Future (EFTF) program, a government initiative undertaken by the Australian Government to boost investment in resource exploration and development in northern Australia. The samples were collected during two EFTF funded field seasons conducted in May 2017 (18 samples, GA job number 33004) and May 2018 (35 samples, GA job number 33228). <p>This data release contains the results of elemental analyses including X-Ray Fluorescence (XRF), Inductively Coupled Plasma- Mass Spectrometry (ICP-MS), iron titration (FeO), Loss-On-Ignition (LOI) and Rock-Eval pyrolysis on 53 outcrop samples collected across two seasons of fieldwork in the South Nicholson region. This data release are provided to facilitate establishment of important baseline assessments and whole rock characterisation of regional sedimentary rocks for insight into the resource prospectivity of northern Australian basins. These data was generated at the Geochemistry Laboratories at Geoscience Australia as part of the Exploring for the Future program
-
The structural evolution of the South Nicholson region is not well understood, hindering full appraisal of the resource potential across the region. Here, we outline new insights from a recent deep-reflection seismic survey, collected as part of the Australian Government’s Exploring for the Future initiative. The new seismic profiles, and new field observations and geochronology, indicate that the South Nicholson region was characterised by episodic development of a series of ENE-trending half grabens. These graben structures experienced two major episodes of extension, at ca. 1725 Ma and ca. 1640 Ma, broadly correlating with extensional events identified from the Lawn Hill Platform and the Mount Isa Province to the east. Southward stratal thickening of both Calvert and Isa Superbasin sequences (Paleoproterozoic Carrara Range and McNamara groups, respectively) into north-dipping bounding faults is consistent with syndepositional extension during half graben formation. Subsequent basin inversion, and reactivation of the half graben bounding faults as south-verging thrusts, appears to have been episodic. The observed geometry and offset are interpreted as the cumulative effect of multiple tectonic events, including the Isan Orogeny, with thrust movement on faults occurring until at least the Paleozoic Alice Springs Orogeny. <b>Citation:</b> Carson, C.J.. Henson, P.A., Doublier, M.P., Williams, B., Simmons, J., Hutton, L. and Close, D., 2020. Structural evolution of the South Nicholson region: insight from the 2017 L210 reflection seismic survey. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225 m investment by the Australian Government. </div><div>As part of this program, Geoscience Australia led two deep crustal reflection seismic surveys in the South Nicholson region, revealing the existence of the Carrara Sub-basin, a large sedimentary depocentre up to 8 km deep, beneath the Georgina Basin (Carr et al., 2019; 2020). The depocentre is believed to contain thick sequences of highly prospective Proterozoic rocks for base metals and unconventional hydrocarbons. To confirm geological interpretations and assess resource potential, the National Drilling Initiative, NDI Carrara 1 stratigraphic drill hole was completed in late 2020, as a collaboration between Geoscience Australia, the Northern Territory Geological Survey (NTGS) and the MinEx CRC (Geoscience Australia, 2021). NDI Carrara 1 is located on the western flank of the Carrara Sub-basin on the South Nicholson seismic line (17GA-SN1) (Figure 1.1; Figure 1.2), reaching a total depth of 1751 m, intersecting sedimentary rocks comprising ca. 630 m of Cambrian calcareous shales of the Georgina Basin and ca. 1100 m of Proterozoic carbonates and siliciclastics that include black shales of the Carrara Sub-basin.</div><div>This report presents data on selected rock samples from NDI Carrara 1, conducted by the Mawson Analytical Spectrometry Services, University of Adelaide, under contract to Geoscience Australia. These results include bulk carbon isotope ratios (δ13C) of bitumens and isolated kerogens. In addition, a selection of 10 samples was analysed at Geoscience Australia for comparison purposes.</div><div><br></div>