From 1 - 2 / 2
  • This work is a part of an investigation of mineralisation associated with the extensive Kennedy Igneous Association (Champion & Bultitude, 2013) in North Queensland. This part of the project involves U–Pb zircon geochronology of magmatic rocks that are associated with gold mineralisation. By doing this we hope to identify key time-periods of magmatic activity that can be used by explorers to better focus their exploration efforts and assist with the development of new tectono-metallogenic models. Earlier results published by Cross et al. (2019) and Kositcin et al. (2016) in the Jardine Subprovince of the Kennedy Igneous Association in Cape York, for the first time, demonstrated a strong association between gold mineralisation and early Permian (285–280 Ma) felsic dykes that intrude either Proterozoic metamorphic rocks or Devonian granites of the Cape York Batholith. The SHRIMP U–Pb zircon results reported here come from three magmatic rocks, Badu Granite (2678819/QFG8689E), Horn Island Granite (2678820/QFG8800A) and unnamed rhyolite (2678818/QFG8798A), that were sampled from exploration drill core, drilled by Alice Queen Limited on behalf of its subsidiary company, Kauraru Gold Pty Ltd between 2016 and 2017 on the western margins of the historic Horn Island gold mine. Prior to this work, magmatic rocks of the Badu Supersuite on Horn Island were attributed to the Jardine Subprovince of the Kennedy Igneous Association (Champion & Bultitude 2013). The Badu Supersuite comprises the Badu Suite (Badu Granite, Horn Island Granite and unmineralised porphyritic dykes; von Gnielinski et al., 1997) and the Torres Strait Volcanic Group. Gold mineralisation on Horn Island is intrusion-related and occurs within narrow quartz veins that contain native gold and sulphide mineralisation (Alice Queen Limited, 2021) that cut both the Badu and Horn Island granites but not the late-stage porphyritic dykes (von Gnielinski, 1996; von Gnielinski et al., 1997). Historical K–Ar ages from 286–302 Ma for Badu Suite intrusives (Richards and Willmott, 1970) were used to imply a late Carboniferous to early Permian age for the Torres Strait Volcanic Group. Recently however, two units from the Torres Strait Volcanic Group, the Endeavour Strait Ignimbrite and the ‘Bluffs Quarry’ rhyolite dyke yielded SHRIMP 206Pb/238U ages of 349.2 ± 3.1 Ma (Cross et al., 2019) and 353.4 ± 2.2 Ma (Kositcin et al., 2016), respectively, placing this group in the early Carboniferous. Two of the samples, the Badu Granite (2678819/QFG8689E) and Horn Island Granite (2678820/QFG8800A) gave indistinguishable 206Pb/238U results within analytical uncertainty (MSWD = 1.6, POF = 0.21) of 342.8 ± 1.9 Ma and 344.4 ± 1.7 Ma, respectively. The unmineralised, cross cutting, unnamed rhyolite (2678818/QFG8798A) has a significantly younger 206Pb/238U age of 309.9 ± 1.5 Ma. These results demonstrate that the Badu Granite and Horn Island Granite are early Carboniferous in age and not early Permian as previously thought. The historical K–Ar ages (302–286 Ma) for Badu Suite intrusives are interpreted to record thermal resetting. Together with the ca 350 Ma crystallisation ages for two units from the Torres Strait Volcanic Group (Cross et al., 2019; Kositcin et al., 2016), these new results reveal that magmatic crystallisation ages for the Badu Supersuite range between ca 350 Ma and 310 Ma. As such, the Badu Supersuite, along with the Black Cap Diorite (350.7 ± 1.3 Ma; Murgulov et al., 2009) near Georgetown, represents the earliest phase of magmatism associated with the early Carboniferous to late Permian, Kennedy Igneous Association. Consequently, the Badu Supersuite including the Badu Suite and the Torres Strait Volcanic Group are now seen to belong to a newly named Torres Strait Subprovince, which is distinctly older than the Jardine Subprovince on Cape York Peninsula. Additionally, these results constrain the timing of gold mineralisation at Horn Island to between a maximum age at ca 344 Ma provided by the host granites and a minimum age at ca 310 Ma constrained by the rhyolite dyke (2678818/QFG8798A). These constraints for the timing of gold mineralisation at Horn Island are further supported by unpublished results presented by Lisitsin & Dhnaram (2019a, b). These workers mention preliminary ca 342–344 Ma Re–Os molybdenite ages from two samples of quartz-molybdenite veins that cut the Badu Granite and an Ar–Ar age from sericite alteration associated with a quartz-sulphide-gold vein at ca 320 Ma that they considered to best represent the timing of gold mineralisation. The new SHRIMP U–Pb zircon ages presented here for magmatic rocks of the Badu Suite, reveal the association between gold mineralisation and early Carboniferous magmatism associated with the newly named Torres Strait Subprovince of the Kennedy Igneous Association.

  • SHRIMP U-Pb zircon and monazite geochronology of magmatic, metamorphic and sedimentary rocks sampled from an undercover region informally referred to as ‘East Tennant’, located approximately 200 km east of Tennant Creek, has redefined our knowledge of the geology of this region. These results establish strong temporal links with rocks in the Au-Cu-Bi mineralised Tennant Creek region (Warramunga Province) and the Paleoproterozoic Murphy Province, approximately 270 km to the northeast. Detrital zircon U-Pb analyses of two metasedimentary samples show maximum depositional ages of ca. 1875 Ma and detrital zircon age spectra similar to Warramunga Formation metasedimentary rocks in the Warramunga Province. Additionally, three extrusive rocks and an intermediate intrusive rock have magmatic crystallisation ages of 1858–1849 Ma, synchronous with magmatism in the Warramunga Province associated with the 1860–1845 Ma Tennant Event. Monazite U-Pb analyses of two samples of metapelites from the East Tennant region and Murphy Province record metamorphism at ca. 1845 Ma, which is also synchronous with magmatism associated with the Tennant Event. These new results suggest that the undercover East Tennant region could represent an extension of the Warramunga Province and therefore be prospective for Au-Cu-Bi mineralisation. <b>Citation:</b> Cross, A.J., Clark, A.D., Schofield, A. and Kositcin, N., 2020. New SHRIMP U-Pb zircon and monazite geochronology of the East Tennant region: a possible undercover extension of the Warramunga Province, Tennant Creek. In: Czarnota, K., Roach, I., Abbott, S., Haynes, M., Kositcin, N., Ray, A. and Slatter, E. (eds.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, 1–4.