From 1 - 10 / 14
  • MODIS (Moderate Resolution Imaging Spectroradiometer) is the key instrument aboard the satellites Terra (EOS AM-1), launched on 18 December 1999 and Aqua (EOS PM-1), launched on 4 May 2002. MODIS views almost the entire surface of the Earth every day, acquiring data in 36 spectral bands over a 2330 km swath. MODIS data will improve the understanding of global dynamics and processes occurring on the land, in the oceans, and in the lower atmosphere. ACRES has been acquiring MODIS data since April 2000 and December 2002 from TERRA and ACQUA satellites respectively. Registered users can download this data free of cost from ACRES web site.

  • The mean land-surface temperature represents an important boundary condition for many geothermal studies. This boundary is particularly important to help constrain the models made to analyse resource systems, many of which are shallow in nature and observe relatively small thermal gradients. Consequently, a mean land-surface temperature map of the Australian continent has been produced from 13 years of MODIS satellite imagery, for the period 2003–2015. The map shows good agreement with independent methods of estimating mean landsurface temperature, including borehole surface-temperature extrapolation and long-term, near-surface ground measurements. In comparison to previously used methods of estimating mean land-surface temperature, our new estimates are up to 12 °C warmer. The MODIS-based method presented in this study provides spatially continuous estimates of land-surface temperature that can be incorporated as the surface thermal boundary condition in geothermal studies. The method is also able to provide a quantification of the uncertainties expected in the application of these estimates for the purposes of thermal modelling.

  • <p>The dataset measures the long-term seasonal variations of the chlorophyll a concentrations of ocean surface waters. They are derived from MODIS (aqua) images using NASA's SeaDAS image processing software. The monthly chlorophyll a images between July 2002 and December 2017 are used to calculate the standard deviations of the four austral seasons: winter (June, July, and August), spring (September, October and November), summer (December, January and February) and autumn (March, April and May). The extent of the dataset covers the entire Australian EEZ and surrounding waters (including the southern ocean). The unit of the dataset is mg/m3. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • The Digital Earth Australia Hotspots web service has been developed as part of the Digital Earth Australia Hotspots national bushfire monitoring system. The service delivers hotspot data derived from (a growing number of) satellite-born instruments that detect light in the thermal wavelengths. The colour of the spot represents the time the Hotspot was last observed by a passing satellite (e.g. 0-2 hours). The colour does not indicate severity. Typically, the satellite data are processed with a specific algorithm that highlights areas with an unusually high temperature. In principle, however, Hotspots may be sourced from non-satellite sources.

  • The Digital Earth Australia Hotspots web service has been developed as part of the Digital Earth Australia Hotspots national bushfire monitoring system. The service delivers hotspot data derived from (a growing number of) satellite-born instruments that detect light in the thermal wavelengths. The colour of the spot represents the time the Hotspot was last observed by a passing satellite (e.g. 0-2 hours). The colour does not indicate severity. Typically, the satellite data are processed with a specific algorithm that highlights areas with an unusually high temperature. In principle, however, Hotspots may be sourced from non-satellite sources. Lineage (for eCatID 101800 and 101780): The Sentinel Hotspots system was originally developed in 2010. The Sentinel Hotspots webservice was republished in 2016 as part of a platform upgrade. The Digital Earth Australia Hotspots system and webservices was redeveloped in 2019 as part of a platform upgrade.

  • <p>The dataset measures the long-term seasonal means of the chlorophyll a concentrations of ocean surface waters. They are derived from MODIS (aqua) images using NASA's SeaDAS image processing software. The monthly chlorophyll a images between July 2002 and December 2017 are used to calculate the means of the four austral seasons: winter (June, July, and August), spring (September, October and November), summer (December, January and February) and autumn (March, April and May). The extent of the dataset covers the entire Australian EEZ and surrounding waters (including the southern ocean). The unit of the dataset is mg/m3. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • This GIS data layer shows the frequency of coastal upwelling along the south-eastern coast of Australia. The higher data values indicate areas of persistent and semi-persistent upwelling; while, the medium data values indicate areas of seasonal upwelling. The data was generated using 14 years of monthly MODIS SST data. Please refer to this publication: "Huang, Z., & Wang, X.H. (2019). Mapping the spatial and temporal variability of the upwelling systems of the Australian south-eastern coast using 14-year of MODIS data. Remote Sensing of Environment, 227, 90-109" (https://doi.org/10.1016/j.rse.2019.04.002) for details of the MODIS data and the upwelling mapping method.

  • <p>The dataset measures the long-term seasonal variations of the sea surface temperature (SST) of ocean surface waters. They are derived from MODIS (aqua) images using NASA's SeaDAS image processing software. The monthly SST images between July 2002 and December 2017 are used to calculate the standard deviations of the four austral seasons: winter (June, July, and August), spring (September, October and November), summer (December, January and February) and autumn (March, April and May). The extent of the dataset covers the entire Australian EEZ and surrounding waters (including the southern ocean). The unit of the dataset is Celsius degree. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • <p>The dataset measures the long-term seasonal means of the sea surface temperature (SST) of ocean surface waters. They are derived from MODIS (aqua) images using NASA's SeaDAS image processing software. The monthly SST images between July 2002 and December 2017 are used to calculate the means of the four austral seasons: winter (June, July, and August), spring (September, October and November), summer (December, January and February) and autumn (March, April and May). The extent of the dataset covers the entire Australian EEZ and surrounding waters (including the southern ocean). The unit of the dataset is Celsius degree. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.

  • <p>The dataset indicates the long-term overall primary productivity hotspots of ocean surface waters. They are derived from MODIS (aqua) images using NASA's SeaDAS image processing software. The monthly chlorophyll a images between July 2002 and August 2014 are used to identify the overall primary productivity hotspots. The extent of the dataset covers the entire Australian EEZ and surrounding waters (including the southern ocean). The value (between 0 and 1.0) of the dataset represents the likelihood of the location being a primary productivity hotspot. <p>This research is supported by the National Environmental Science Program (NESP) Marine Biodiversity Hub through Project D1.