From 1 - 10 / 13
  • <div>At the 2021 AESC (Australian Earth Sciences Convention), Geoscience Australia (GA) introduced a continental-scale Isotopic Atlas of Australia (Fraser et al., 2020) through an interactive poster display (Fraser et al., 2021). In the two years since, progress on this Isotopic Atlas has continued and expanded datasets are now publicly available and downloadable via Geoscience Australia’s Exploring for the Future (EFTF) Geochronology and Isotopes Data Portal.</div><div><br></div><div>This poster provides example maps produced from the compiled data of multiple geochronology and isotopic tracer datasets, now available in the Geochronology and Isotopes Data Portal. Available data include Sm–Nd model ages of magmatic rocks (Champion et al., 2013); Lu–Hf isotopes from zircon and associated O-isotope data (Waltenberg et al., 2023); Pb–Pb isotopes from ore-related minerals such as galena and pyrite (Huston et al., 2019); Rb–Sr stable isotopes from surface regolith (de Caritat et al., 2022, 2023); U–Pb interpreted ages of magmatic, metamorphic and sedimentary rocks (Jones et al., 2018); and K–Ar, Ar–Ar, Re–Os, Rb–Sr and fission-track interpreted ages from minerals and whole rocks.</div><div><br></div><div>Significant recent additions to the datasets include geochronology compilations for Victoria (Waltenberg et al., 2021) and Tasmania (Jones et al., 2022) and full geochronology analytical data tables for GA’s SHRIMP (Sensitive High Resolution Ion Micro Probe) U–Pb results. The online data portal provides tools for visualizing data in commonly-used diagrammatic formats (e.g. Time-Space style plots for geochronology, isotope evolution diagrams for Nd and Hf data). Data are also available for download in a range of formats (CSV, JSON, KML, Shapefile) to allow manipulation and visualization offline for specific purposes.</div><div><br></div><div>Work is ongoing to improve the coverage of legacy interpreted ages geochronology data, to include geochronology analytical data tables for both ID-TIMS and LA-ICP-MS data, and to update the Sm-Nd and Pb-Pb in ores coverages with new data. New work is in progress to develop a Pb-Pb isotopic coverage from representative ‘basement’ rocks (Liebmann et al., 2022) and to expand the coverage of oxygen and Lu-Hf isotopes from zircon, with a current focus in south-eastern Australia (Mole et al., 2022).</div><div><br></div><div>This Isotopic Atlas of Australia provides a convenient visual overview of age and isotopic patterns reflecting geological processes that have led to the current configuration of the Australian continent, including progressive development of continental crust from the mantle. These datasets and maps unlock the collective value of several decades of geochronological and isotopic studies conducted across Australia, and provide an important complement to other geological maps and geophysical images—in particular, by adding a time dimension to 2D and 3D maps and models.</div> Abstract/Poster submitted and presented at 2023 Australian Earth Science Convention (AESC), Perth WA (https://2023.aegc.com.au/)

  • This Record documents the efforts of Mineral Resources Tasmania (MRT) and Geoscience Australia (GA) in compiling a geochronology (age) compilation for Tasmania, describing both the dataset itself and the process by which it is incorporated into the continental-scale Isotopic Atlas of Australia. The Isotopic Atlas draws together age and isotopic data from across the country and provides visualisations and tools to enable non-experts to extract maximum value from these datasets. Data is added to the Isotopic Atlas in a staged approach with priorities determined by GA- and partner-driven focus regions and research questions. This Tasmanian compilation represents the second in a series of compilation publications (Records and Datasets) for the southern states of Australia, which are a foundation for the second phase of the Exploring for the Future initiative over 2020–2024. It was compiled primarily from data, reports, journal articles and theses provided to GA by MRT. The most current data can be accessed and downloaded from GA’s <a href=https://portal.ga.gov.au/persona/geochronology>EFTF Geochronology and Isotopes Data Portal</a> and MRT’s <a href=https://www.mrt.tas.gov.au/mrt_maps/app/list/map>LISTmap.</a>

  • An Isotopic Atlas of Australia (Fraser et al., 2020) provides a convenient visual overview of age and isotopic patterns reflecting geological processes that have led to the current configuration of the Australian continent, including progressive development of continental crust from the mantle. This poster provides example maps produced from compiled data of multiple geochronology and isotopic tracer datasets from this Isotopic Atlas, now publicly available and downloadable via Geoscience Australia’s (GA) Exploring for the Future (EFTF) <a href="https://portal.ga.gov.au/persona/geochronology">Geochronology and Isotopes Data Portal</a> and Mineral Resources Tasmania’s <a href="https://www.mrt.tas.gov.au/mrt_maps/app/list/map">Listmap</a>. These datasets and maps unlock the collective value of several decades of geochronological and isotopic studies conducted across Australia. Compiled geochronology, which commenced with coverage of northern Australia (Jones et al., 2018), is now much more comprehensive across Victoria (Waltenberg et al., 2021) and Tasmania (Jones et al., in press), with New South Wales and South Australia updates well underway. Available data include: Sm–Nd model ages of magmatic rocks; Lu–Hf isotopes from zircon and associated O-isotope data; Pb–Pb isotopes from ore-related minerals such as galena and pyrite; Rb–Sr isotopes from soils; U–Pb ages of magmatic, metamorphic and sedimentary rocks; and K–Ar, Ar–Ar, Re–Os, Rb–Sr and fission-track ages from minerals and whole rocks. <b>To view the associated poster see <a href="https://dx.doi.org/10.26186/147420">eCat 147420</a>. This Abstract & Poster were presented to the 2022 Specialist Group in Tectonics & Structural Geology(SGTSG) Conference 22-24 November (https://www.sgtsg.org/). </b> <i>Fraser, G.L., Waltenberg, K., Jones, S.L., Champion, D.C., Huston, D.L., Lewis, C.J., Bodorkos, S., Forster, M., Vasegh, D., Ware, B., Tessalina, S. 2020. An Isotopic Atlas of Australia. Geoscience Australia, Canberra. https://doi.org/10.11636/133772. Geoscience Australia. 2021. Geoscience Australia Exploring for the Future portal, viewed 13 September 2022. https://portal.ga.gov.au/persona/geochronology. Jones, S.L., Anderson, J.R., Fraser, G.L., Lewis, C.J., McLennan, S.M. 2018. A U-Pb Geochronology Compilation for Northern Australia: Version 2, 2018. Geoscience Australia Record 2018/49. https://doi.org/10.11636/Record.2018.049. Jones, S.L., Waltenberg, K., Ramesh, R., Cumming, G., Everard, J.L., Vicary, M.J., Bottrill, R.S., Knight, K., McNeill, A.W., Bodorkos, S., Meffre, S. in press. Isotopic Atlas of Australia: Geochronology compilation for Tasmania Version 1.0. Geoscience Australia Record. Mineral Resources Tasmania. 2022. Mineral Resources Tasmania Listmap, viewed 19 September 2022. https://www.mrt.tas.gov.au/mrt_maps/app/list/map. Waltenberg, K., Jones, S.L., Duncan, R.J., Waugh, S., Lane, J. 2021. Isotopic Atlas of Australia: Geochronology compilation for Victoria Version 1.0. Geoscience Australia Record 2021/24. https://doi.org/10.11636/Record.2021.024. </i>

  • The first iteration of a continental-scale Isotopic Atlas of Australia was introduced by Geoscience Australia at the 2019 SGGMP conference in Devonport, Tasmania, through a talk and poster display. In the three years since, progress on this Isotopic Atlas has continued and expanded datasets are now publicly available and downloadable via Geoscience Australia’s Exploring for the Future (EFTF) <a href="https://portal.ga.gov.au/persona/geochronology">Geochronology and Isotopes Data Portal</a>. This poster provides example maps produced from the compiled data of multiple geochronology and isotopic tracer datasets, now available in the <a href="https://portal.ga.gov.au/persona/eftf">EFTF Portal</a>. Available data include Sm–Nd model ages of magmatic rocks; Lu–Hf isotopes from zircon and associated O-isotope data; Pb–Pb isotopes from ore-related minerals such as galena and pyrite; Rb–Sr isotopes from soils; U–Pb ages of magmatic, metamorphic and sedimentary rocks; and K–Ar, Ar–Ar, Re–Os, Rb–Sr and fission-track ages from minerals and whole rocks. Compiled geochronology, which commenced with coverage of northern Australia, is now much more comprehensive across Victoria and Tasmania, with New South Wales and South Australia updates well underway. This Isotopic Atlas of Australia provides a convenient visual overview of age and isotopic patterns reflecting geological processes that have led to the current configuration of the Australian continent, including progressive development of continental crust from the mantle. These datasets and maps unlock the collective value of several decades of geochronological and isotopic studies conducted across Australia, and provide an important complement to other geological maps and geophysical images—in particular, by adding a time dimension to 2D and 3D maps and models. To view the associated poster see <a href="https://pid.geoscience.gov.au/dataset/ga/147377">eCat 147377</a>. This Abstract & Poster were presented to the 2022 Specialist Group in Geochemistry, Mineralogy and Petrology (SGGMP) Conference 7-11 November (https://gsasggmp.wixsite.com/home/biennial-conference-2021)

  • <div>Strontium isotopes (87Sr/86Sr) are useful in the earth sciences (e.g. recognising geological provinces, studying geological processes) as well in archaeological (e.g. informing on past human migrations), palaeontological/ecological (e.g. investigating extinct and extant taxa’s dietary range and migrations) and forensic (e.g. validating the origin of drinks and foodstuffs) sciences. Recently, Geoscience Australia and the University of Wollongong have teamed up to determine 87Sr/86Sr ratios in fluvial sediments selected mostly from the low-density National Geochemical Survey of Australia (NGSA; www.ga.gov.au/ngsa). The present study targeted the Yilgarn geological region in southwestern Australia. The samples were mostly taken from a depth of ~60-80 cm (Bottom Outlet Sediments, BOS) in floodplain deposits at or near the outlet of large catchments (drainage basins). A small number of surface (0-10 cm) samples (Top Outlet Sediments, TOS) were also included in the study. For all, a coarse grain-size fraction (<2 mm) was air-dried, sieved, milled then digested (hydrofluoric acid + nitric acid followed by aqua regia) to release total strontium. Overall, 107 NGSA BOS < 2 mm and 13 NGSA TOS < 2 mm were analysed for Sr isotopes. Given that there are ~10 % field duplicates in the NGSA, all those samples originate from within 97 NGSA catchments, which together cover 533 000 km2 of southwestern Australia. Preliminary results for the BOS samples demonstrate a wide range of strontium isotopic values (0.7152 < 87Sr/86Sr < 1.0909) over the survey area, reflecting a large diversity of source rock lithologies, geological processes and bedrock ages. Spatial distribution of 87Sr/86Sr shows coherent (multi-point anomalies and smooth gradients), large-scale (>100 km) patterns that appear to be consistent, in many places, with surface geology, regolith/soil type and/or nearby outcropping bedrock. For instance, catchments in the western and central Yilgarn dominated by felsic intrusive basement geology have radiogenic 87Sr/86Sr signatures in the floodplain sediments consistent with published whole-rock data. Similarly, unradiogenic signatures in sediments in the eastern Yilgarn are in agreement with published whole-rock data. Our results to-date indicate that incorporating soil/regolith strontium isotopes in regional, exploratory geoscience investigations can help identify basement rock types under (shallow) cover, constrain surface processes (e.g. weathering, dispersion), and, potentially, recognise components of mineral systems. Furthermore, the resulting strontium isoscape and model derived therefrom can also be utilised in archaeological, paleontological and ecological studies that aim to investigate past and modern animal (including humans) dietary habits and migrations.&nbsp; The new spatial dataset is publicly available through the Geoscience Australia portal https://portal.ga.gov.au/.</div>

  • <div>Lithospheric and crustal architecture — the framework of major tectonic blocks, terranes and their boundaries — represents a fundamental first-order control on major geological systems, including the location of world-class mineral camps. Traditionally, lithospheric and crustal architecture are constrained using predominantly geophysical methods. However, Champion and Cassidy (2007) pioneered the use of regional Sm–Nd isotopic data from felsic igneous rocks to produce isotopic contour maps of the Yilgarn Craton, demonstrating the effectiveness of ‘isotopic mapping’, and the potential to map ‘time-constrained’ crustal architecture. Mole et al. (2013) demonstrated the association between lithospheric architecture and mineral systems, highlighting the potential of isotopic mapping as a greenfield area selection tool. Additional work, using Lu-Hf isotopes (Mole et al., 2014), demonstrated that the technique could constrain a range of temporal events via ‘time-slice mapping’, explaining how Ni-Cu-PGE mineralized komatiite systems migrated with the evolving lithospheric boundary of the Yilgarn Craton from 2.9 to 2.7 Ga. Similar studies have since been conducted in West Africa (Parra-Avila et al., 2018), Tibet (Hou et al., 2015), and Canada (Bjorkman, 2017; Mole et al., 2021; 2022). This work continues in Geoscience Australia’s $225 million Exploring for the Future program (2016-present). Isotopic mapping, which forms an integral part of a combined geology-geophysics-geochemistry approach, is currently being applied across southeast Australia, covering the eastern Gawler Craton, Delamerian Orogen, and western Lachlan Orogen, encompassing more than 3 Gyrs of Earth history with demonstrable potential for large mineral systems.</div><div> <b>Reference(s):</b></div><div> Bjorkman, K.E., 2017. 4D crust-mantle evolution of the Western Superior Craton: Implications for Archean granite-greenstone petrogenesis and geodynamics. University of Western Australia, PhD Thesis, 134 pp.</div><div> Champion, D.C. and Cassidy, K.F., 2007. An overview of the Yilgarn Craton and its crustal evolution. In: F.P. Bierlein and C.M. Knox-Robinson (Editors), Proceedings of Geoconferences (WA) Inc. Kalgoorlie '07 Conference. Geoscience Australia Record 2007/14, Kalgoorlie, Western Australia, pp. 8-13.</div><div> Hou, Z., Duan, L., Lu, Y., Zheng, Y., Zhu, D., Yang, Z., Yang, Z., Wang, B., Pei, Y., Zhao, Z. and McCuaig, T.C., 2015. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen. Economic Geology, 110(6): 1541-1575.</div><div> Mole, D.R., Fiorentini, M.L., Cassidy, K.F., Kirkland, C.L., Thebaud, N., McCuaig, T.C., Doublier, M.P., Duuring, P., Romano, S.S., Maas, R., Belousova, E.A., Barnes, S.J. and Miller, J., 2013. Crustal evolution, intra-cratonic architecture and the metallogeny of an Archaean craton. Geological Society, London, Special Publications, 393: pp. 23-80.</div><div> Mole, D.R., Fiorentini, M.L., Thebaud, N., Cassidy, K.F., McCuaig, T.C., Kirkland, C.L., Romano, S.S., Doublier, M.P., Belousova, E.A., Barnes, S.J. and Miller, J., 2014. Archean komatiite volcanism controlled by the evolution of early continents. Proceedings of the National Academy of Sciences, 111(28): 10083-10088.</div><div> Mole, D.R., Thurston, P.C., Marsh, J.H., Stern, R.A., Ayer, J.A., Martin, L.A.J. and Lu, Y., 2021. The formation of Neoarchean continental crust in the south-east Superior Craton by two distinct geodynamic processes. Precambrian Research, 356: 106104.</div><div> Mole, D.R., Frieman, B.M., Thurston, P.C., Marsh, J.H., Jørgensen, T.R.C., Stern, R.A., Martin, L.A.J., Lu, Y.J. and Gibson, H.L., 2022. Crustal architecture of the south-east Superior Craton and controls on mineral systems. Ore Geology Reviews, 148: 105017.</div><div> Parra-Avila, L.A., Belousova, E., Fiorentini, M.L., Eglinger, A., Block, S. and Miller, J., 2018. Zircon Hf and O-isotope constraints on the evolution of the Paleoproterozoic Baoulé-Mossi domain of the southern West African Craton. Precambrian Research, 306: 174-188.</div><div> This Abstract was submitted/presented to the Target 2023 Conference 28 July (https://6ias.org/target2023/)

  • <div>An Isotopic Atlas of Australia provides a convenient visual overview of age and isotopic patterns reflecting geological processes that have led to the current configuration of the Australian continent, including progressive development of continental crust from the mantle. This poster provides example maps produced from compiled data of multiple geochronology and isotopic tracer datasets from this Isotopic Atlas.&nbsp;It is also a promotion for the release of the Victorian and Tasmanian age compilation datasets (Waltenbeg et al., 2021; Jones et al., 2022).</div>

  • The Exploring for the Future program Showcase 2024 was held on 13-16 August 2024. Day 2 - 14th August talks included: <b>Session 1 - Architecture of the Australian Tectonic Plate</b> <a href="https://youtu.be/a8jzTdNdwfk?si=OWNlVR-FLDhF1GVM">AusArray: Australian lithosphere imaging from top to bottom</a> - Dr Alexei Gorbatov <a href="https://youtu.be/j5ox8Ke5n6M?si=YkfDno2xmZXueS1b">AusLAMP: Mapping lithospheric architecture and reducing exploration space in Australia</a> - Jingming Duan <a href="https://youtu.be/qZ6wjzx_dNc?si=NjDEzvqyEeM24-E8">Constraining the thermomechanical and geochemical architecture of the Australian mantle: Using combined analyses of xenolith inventories and seismic tomography</a> - Dr Mark Hoggard <b>Session 2 - Quantitative characterisation of Australia's surface and near surface</b> <a href="https://youtu.be/nPfa_j3_dos?si=mktfIJWXeLElIOK4">AusAEM: The national coverage and sharpening near surface imaging</a> - Dr Anandaroop Ray <a href="https://youtu.be/SU6ak98JvAw?si=DQPovulHa4poqcm0">Unlocking the surface geochemistry of Australia</a> - Phil Main <a href="https://youtu.be/Xtm45CT6e-s?si=JHU7J-ktgVrbj1Ke">Spotlight on the Heavy Mineral Map of Australia</a> - Dr Alex Walker <b>Session 3 – Maps of Australian geology like never before</b> <a href="https://youtu.be/aRISb1YYigU?si=3byJbqW0qRTqCB8-">An Isotopic Atlas of Australia: Extra dimensions to national maps</a> - Dr Geoff Fraser <a href="https://youtu.be/khSy-WAkw-w?si=F-Y67FX3jXN5zZaz">First continental layered geological map of Australia</a> - Dr Guillaume Sanchez <a href="https://youtu.be/Z3GlCJepLK4?si=k_tbaKdmxGBmoSro">An integrated 3D layered cover modelling approach: Towards open-source data and methodologies for national-scale cover modelling</a> - Sebastian Wong View or download the <a href="https://dx.doi.org/10.26186/149800">Exploring for the Future - An overview of Australia’s transformational geoscience program</a> publication. View or download the <a href="https://dx.doi.org/10.26186/149743">Exploring for the Future - Australia's transformational geoscience program</a> publication. You can access full session and Q&A recordings from YouTube here: 2024 Showcase Day 2 - Session 1 - <a href="https://www.youtube.com/watch?v=EHBsq0-pC8c">Architecture of the Australian Tectonic Plate</a> 2024 Showcase Day 2 - Session 2 - <a href="https://youtube.com/watch?v=xih4lbDk-1A">Quantitative characterisation of Australia's surface and near surface</a> 2024 Showcase Day 2 - Session 3 - <a href="https://www.youtube.com/watch?v=qeTLc1K-Cds">Maps of Australian geology like never before</a>

  • <div>Poster for the Specialist Group in Geochemistry, Mineralogy & Petrology (SGGMP) conference in Yallingup WA in November 2022.</div><div><br></div>This Poster was presented to the 2022 Specialist Group in Geochemistry, Mineralogy and Petrology (SGGMP) Conference 7-11 November (https://gsasggmp.wixsite.com/home/biennial-conference-2021)

  • <div>Historically, isotopic data are collected at the individual sample level on local- to regional-scale features and are dispersed among decades of both published and unpublished individual academic literature, university theses and geological survey reports, in disparate formats and with widely varying levels of detail. Consequently, it has been difficult to visualise or interrogate the collective value of age and isotopic data at continental-scale. Geoscience Australia’s (GA) continental-scale Isotopic Atlas of Australia (Fraser et al., 2020), breaks this cycle of single-use science by compiling and integrating <strong>multiple radiometric age and isotopic tracer datasets</strong> and making them publicly accessible and useable through GA’s Exploring for the Future (EFTF) Portal.</div><div><br></div><div>The first iteration of a continental-scale Isotopic Atlas of Australia was introduced by Geoscience Australia at the 2019 SGGMP conference in Devonport, Tasmania, through a talk and poster display. In the three years since, progress on this Isotopic Atlas has continued and expanded datasets are now publicly available and downloadable via Geoscience Australia’s Exploring for the Future (EFTF) Geochronology and Isotopes Data Portal.&nbsp;</div>