From 1 - 10 / 42
  • <div>This document describes a series of experiments that grow student understanding of the concepts on porosity and permeability as it relates to groundwater. Sediments are used to substitute for sedimentary rocks and water movement through different types of sediment is evaluated. The document is split into two sections, background information for teachers and a 3 part experiment with activity sheet for students. The activities are suitable for use with secondary to senior secondary science and geography students.</div>

  • <div>Understanding groundwater flow dynamics within the Great Artesian Basin (GAB) is critical for responsible management of groundwater from an environmental, economic and cultural perspective. Numerical groundwater flow modelling involves generating a simplified representation of a groundwater system and using Darcy’s Law to simulate groundwater flow rates and the distribution of hydraulic heads throughout the system. This is a pilot study aimed at developing a workflow for groundwater flow modelling of the Great Artesian Basin using Bayesian methods. In this report, we present our initial results from building and running a steady-state groundwater flow model of the entire GAB. We demonstrate a Bayesian inference framework to generate an ensemble of groundwater flow models allowing an assessment of the uncertainty of model parameters and flow velocities.&nbsp;</div><div>Several models have been built to simulate groundwater flow across various areas and layers of the GAB. Most of these models aimed to predict the likely impacts on the groundwater system of some future scenario, generally climate change or groundwater extraction relating to mining activities. While these models are well-suited to their purpose, their focus on particular regions or aquifers makes them unsuitable for investigating large-scale groundwater flow throughout the GAB. In contrast, the model built as part of this study captures the entire GAB and aims to simulate large-scale flow. Although not in scope for this pilot study, the questions a model at this scale is capable of addressing include characterising 3D flow within hydrogeological layers, computing groundwater flux between aquifers and between sub-basins, inferring hydraulic properties and identifying poor quality data. As this model is steady-state and uses hydraulic head data from before the year 2000, it provides a baseline estimate of groundwater flow without considering recent anthropogenic forcing or transient system stresses.&nbsp;</div><div>The GAB is represented as a 14 hydrogeological layer model including basement, Permo-Carboniferous basins, Mesozoic sedimentary aquifers and aquitards and Cenozoic layers. This includes updated hydrogeological surfaces from the GAB project. The input data consisted of 8,065 hydraulic head measurements and 6,151 estimates of recharge rate while the model parameters were a single hydraulic conductivity value for each of the 14 layers. The modelling domain was discretised using 10 x 10 km cells in the horizontal plane and the mesh was deformed vertically to fit between the topography and the basement surface, with the resulting mesh having a vertical discretisation of no coarser than 50 metres. The top boundary condition was a constant head boundary that was a smoothed version of topography. The sides and bottom of the model have no flux boundary conditions and a buffer zone around the GAB was included to minimise boundary effects.&nbsp;&nbsp;</div><div>In total 2500 groundwater flow simulations were run using a Bayesian inversion framework. The inversion sampled various combinations of input parameters to find models with a relatively low misfit, which was calculated by squaring the difference between the observed and simulated values of hydraulic head and recharge. Rather than searching for a global minima, the Metropolis Hastings Markov Chain Monte Carlo sampling algorithm was used to explore a range of possible models and estimate the posterior distribution of each layer’s hydraulic conductivity.&nbsp;</div><div>The model performed adequately and the model parameters were generally consistent with the prior probability distributions based on previous modelling studies. However, the posterior distribution of model parameters were very broad indicating the model was not particularly informative in its current form.&nbsp;&nbsp;</div><div>Groundwater flow velocity vectors from the maximum likelihood model were used to investigate groundwater trends within the Cadna-owie-Hooray aquifer. Uncertainty of model predictions were investigated by calculating the groundwater flow velocity variance across the ensemble. This study demonstrates that it is technically feasible to use Bayesian inference to probabilistically mode groundwater flow across the entire GAB. However, for this approach to yield useful results, more work is required to understand the impacts of simplifying assumptions about layer properties, the quality of the input data and model structure on the resulting flow model.&nbsp;</div><div><br></div>

  • <div>This report summarises information regarding groundwater processes considered to have direct influence on the water balance for the Great Artesian Basin (GAB). These processes are recharge, discharge, and connectivity within the GAB sequence, as well as connectivity with underlying basins and overlying cover. </div><div>The substantial body of literature available on the GAB gives the impression that there is a considerable degree of understanding of the GAB groundwater system. This is, however, misleading. The reality is that many reports and reviews have been cited or reworked from pre-existing studies without carrying over the original uncertainties. Over time, the scale of knowledge gaps has been reduced only incrementally, while there has been a growing appreciation of the complexities in the system. With so much conceptual and quantitative uncertainty, much additional investigation is still required.</div><div><br></div>

  • <div>Aboriginal and Torres Strait Islander peoples hold a wealth of traditional knowledge about their land and waters gathered and passed down from observations over thousands of years. Geoscience Australia (GA) is the national geoscience public sector organisation that advises on the geology, hydrogeology, and geography of Australia by applying science and technology to describe and understand the Earth. Respectful and successful two-way engagement with Indigenous peoples provides an opportunity to identify and share traditional understanding, complementing geoscientific studies and preserving traditional knowledge Through its Innovate Reconciliation Action Plan, GA is committed to building mutually beneficial relationships with Aboriginal and Torres Strait Islander peoples. Aligned with this vision, and as part of the Exploring for the Future Program, GA engaged a subject matter expert to undertake a scoping study. The aim of this study was to provide advice to strengthen the internal processes it uses to engage and undertake projects with Indigenous peoples. Drawing on two case studies (northeast NSW; eastern WA), a framework was developed to guide GA staff in the collection and recording of information and knowledge in a culturally appropriate manner. The project also delivered a road map to achieve better engagement and inclusion of Indigenous peoples in geoscience studies, to be tested and refined in future work programs. The road map is built on six key elements: (1) increasing Indigenous employment; (2) building partnerships; (3) respecting timeframes; (4) embedding Indigenous values and culture; (5) adhering to ethical practices and principles; and (6) embracing two-way knowledge sharing. Trust is crucial to building a partnership with Indigenous communities, binding the six elements of the road map. In the future GA hopes to share the outcomes with other organisations, from applying the framework and road map aimed at improving engagement with Indigenous peoples in groundwater activities and the geosciences more broadly. Presented at the 2022 Australasian Groundwater Conference (AGC)

  • Groundwater is critical to Australia’s future economic development and is the only reliable water source for many regional and rural communities. It also sustains environmental and cultural assets including springs and groundwater-dependent ecosystems. The demand for groundwater in Australia is expected to increase with population growth, economic development and climate change. Geoscience Australia, in partnership with Commonwealth, State and Territory governments is delivering national and regional groundwater investigations through the Exploring for the Future (EFTF) Program to support water management decisions. Geoscience Australia’s groundwater studies apply innovative geoscience tools and robust geoscientific workflows to increase knowledge and understanding of groundwater systems and assessment of groundwater resource potential for economies, communities and the environment. Through integrating geological and hydrogeological data, airborne electromagnetic and ground-based geophysical, hydrogeochemical and remote sensing data, we have developed new geological and hydrogeological conceptual models and identified potential managed aquifer recharge sites in a number of areas across Northern Australia. The EFTF program is focussed on improving our understanding of Australia's groundwater through a National Groundwater Systems project as well as two regional-scale groundwater investigations in Southern Australia. We are commencing an inventory of Australia’s groundwater systems in onshore basins that includes a compilation and broad interpretation of hydrogeological information. This is the basis for the collation and curation of nationally seamless groundwater information to support informed decision making and water resource coordination across jurisdictions. All data and value-added products are freely available for public use via the Exploring for the Future Data Discovery portal (https://portal.ga.gov.au/). This Abstract was submitted to the 2022 Australasian Groundwater Conference 21-23 November (https://agc2022.com.au/)

  • <div>The Australian Government's Trusted Environmental and Geological Information program is a collaboration between Geoscience Australia and CSIRO. Part of this program includes baseline geological and environmental assessments. </div><div> Hydrogeological information has been collated for the Adavale, Cooper, Galilee and north Bowen basins and overlying basins, including the Eromanga and Lake Eyre basins. This information will provide a regionally-consistent baseline dataset that will be used to develop groundwater conceptualisation models.</div><div> Publicly-available data within these basin regions have been compiled from over 30&nbsp;000 boreholes, 120 stream gauges, and 1100 rainfall stations, resulting in revised hydrostratigraphic frameworks. From the published literature, 14 major hydrostratigraphic units are recognised within the basin regions. For each of these major hydrostratigraphic units, we determined the salinity, Darcian yield, specific yield/storativity, groundwater reserve volume for unallocated groundwater, groundwater levels/hydrological pressure, likelihood of inter-aquifer connectivity, rainfall, connectivity between surface water and groundwater, and water-use volume statistics, where relevant, for each basin, hydrogeological province and aquifer. We then adopted a play-based approach to develop holistic hydrostratigraphic conceptualisations of the basin regions. </div><div> Within the Adavale Basin we have defined a new hydrogeological province including two new aquifers defined as the moderate salinity and moderately overpressured Buckabie-Etonvale Aquifer, and the hypersaline and hyper-overpressured Lissoy-Log Creek-Eastwood Aquifer. Similarities between the upper Buckabie-Etonvale Aquifer of the Adavale Basin and lowermost Joe Joe Group of the Galilee Basin suggests connectivity between the upper Adavale and lower Galilee basins. Hydraulic pressures (up to 1500 m of excess freshwater head) calculated for the Lissoy–Log Creek–Eastwood Aquifer indicate that if the aquifer was to be breached, there is potential localised risk to overlying aquifers and surface environments, including infrastructure.</div><div><br></div><div><strong>Author Biography:</strong></div><div>Dr. Chris Gouramanis is a hydrogeologist working in the Trusted Environmental and Geological Information program, in the Minerals, Energy and Groundwater Division of Geoscience Australia. Chris was awarded his PhD from The Australian National University in 2009 and has held several water and environmental policy positions within the Australian Government. He worked for 10 years as an academic at the Earth Observatory of Singapore and the Geography Department at the National University of Singapore. He is also Australia’s National Focal Point to the Scientific and Technical Review Panel of the Ramsar Convention on Wetlands.</div><div><br></div>This Abstract was submitted/presented to the 2022 Australasian Groundwater Conference 21-23 November (https://agc2022.com.au/)

  • <div>As part of the $225 million Exploring for the Future programme, Geoscience Australia have undertaken an investigation into the resource potential of the Officer-Musgrave-Birrindudu region. Part of this project focusses on characterising palaeovalley groundwater resources within the West Musgrave region of Australia. This GA Record is a technical report detailing the science undertaken as part of the Musgrave Palaeovalley groundwater project. The project aimed to improve understanding of the region's palaeovalley architecture, groundwater quality, and overall hydrogeology to support responsible water resource management. The most significant work undertaken included three-dimensional modelling of palaeovalley architecture, groundwater characterisation using hydrochemistry, groundwater model conceptualisation and a detailed review of local groundwater around remote communities in the region. This work will underpin responsible groundwater management into the future.</div>

  • <div>Groundwater dependent ecosystems (GDEs) rely on access to groundwater on a permanent or intermittent basis to meet some or all of their water requirements (Richardson et al., 2011). The <a href="https://explorer-aws.dea.ga.gov.au/products/ga_ls_tc_pc_cyear_3">Tasseled Cap percentile products</a> created by Digital Earth Australia (2023) were used to identify potential GDEs for the South Nicholson-Georgina basins study area. These percentile products provide statistical summaries (10th, 50th, 90th percentiles) of landscape brightness, greenness and wetness in imagery acquired between 1987 and present day. The 10th percentile greenness and wetness represent the lowest 10% of values for the time period evaluated, e.g. 10th percentile greenness represents the least green period. In arid regions, areas that are depicted as persistently green and/or wet at the 10th percentile have the greatest potential to be GDEs. For this reason, and due to accessibility of the data, the 10th percentile Tasseled Cap greenness (TCG) and Tasseled Cap wetness (TCW) products were used as the basis for the assessment of GDEs for the South Nicholson-Georgina region. The 50th percentile greenness was utilised to create the coefficient of variance (CV) dataset. This data release is an ESRI geodatabase, with layer files, including: - combined classified 10th percentile greenness and wetness dataset (useful to identify potential groundwater dependent vegetation/other GDEs and differentiate between vegetation types) - CV of 50th percentile greenness dataset (useful when used in conjunction with the combined product to help identify groundwater dependent vegetation) For more information and detail on these products, refer to associated <a href="https://dx.doi.org/10.26186/149377">report</a>. </div><div><br></div><div><strong>References</strong></div><div>Digital Earth Australia (2023).&nbsp;<em><a href="https://docs.dea.ga.gov.au/">Digital Earth Australia User Guide.</a></em></div><div>Richardson, S., E. Irvine, R. Froend, P. Boon, S. Barber, and B. Bonneville. 2011a.&nbsp;<em>Australian groundwater-dependent ecosystem toolbox part 1: Assessment framework.</em>&nbsp;Waterlines Report 69. Canberra, Australia: Waterlines.</div><div><br></div>

  • <div>Geoscience Australia's Exploring for the Future Program (EFTF) is supporting regional and national-scale initiatives to address Australia’s hydrogeological challenges using an integrated geoscience systems approach. An important early step in the EFTF groundwater program focused on developing a national hydrogeological inventory of Australia’s major groundwater basins and fractured rock provinces. The inventory has its roots in the seminal 1987 Hydrogeology of Australia map, the first continental-scale map of groundwater systems and principal aquifers (Jacobson and Lau, 1987). Seeking to enhance and modernise the supporting information base for the national map, the inventory combines a curated selection of geospatial data attributes supported by focused narrative on the geology and hydrogeology of each basin and fractured rock province.</div><div>&nbsp;</div><div>The national hydrogeological inventory has a broad range of benefits for Australian groundwater users, managers and policy makers. These include the provision of an updated knowledge base covering the hydrogeology and groundwater systems of the major hydrogeological provinces of the nation, as well as important contextual information. The extensive catalogue of knowledge contained in the inventory also enables an objective approach to identify and prioritise areas for further regional assessment.</div><div>&nbsp;</div><div>Based on analysis of data compiled for the national inventory, the Lake Eyre Basin in arid central Australia was the first region prioritised for more detailed hydrogeological assessment during EFTF. The integration of a variety of basin- to national-scale geoscience datasets enabled significant advances in geological and hydrogeological understanding and the development of a new geological model for the three main basin depo-centres, namely the Tirari and Callabonna Sub-basins, and the Cooper Creek Palaeovalley. The geological modelling has further supported a range of hydrogeological applications, including substantial improvements in the number of bores with aquifer attribution, as well as the first regional watertable map across the basin. Abstract submitted and presented at the 2023 AGC NZHS Joint Conference Auckland, NZ (https://www.agcnzhs2023conference.co.nz/)

  • This was the fourth of five presentations held on 31 July 2023 as part of the National Groundwater Systems Workshop - Detailed Groundwater Science Inventory Geology, hydrogeology and groundwater systems in the Kati Thanda-Lake Eyre Basin.