Carrara Sub-basin
Type of resources
Keywords
Publication year
Topics
-
<div>Geoscience Australia’s Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia’s geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia’s transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia’s regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225 m investment by the Australian Government. </div><div>As part of this program, Geoscience Australia led two deep crustal reflection seismic surveys in the South Nicholson region, revealing the existence of the Carrara Sub-basin, a large sedimentary depocentre up to 8 km deep, beneath the Georgina Basin (Carr et al., 2019; 2020). The depocentre is believed to contain thick sequences of highly prospective Proterozoic rocks for base metals and unconventional hydrocarbons. To confirm geological interpretations and assess resource potential, the National Drilling Initiative, NDI Carrara 1 stratigraphic drill hole was completed in late 2020, as a collaboration between Geoscience Australia, the Northern Territory Geological Survey (NTGS) and the MinEx CRC (Geoscience Australia, 2021). NDI Carrara 1 is located on the western flank of the Carrara Sub-basin on the South Nicholson seismic line (17GA-SN1) (Figure 1.1; Figure 1.2), reaching a total depth of 1751 m, intersecting sedimentary rocks comprising ca. 630 m of Cambrian calcareous shales of the Georgina Basin and ca. 1100 m of Proterozoic carbonates and siliciclastics that include black shales of the Carrara Sub-basin.</div><div>This report presents data on selected rock samples from NDI Carrara 1, conducted by the Mawson Analytical Spectrometry Services, University of Adelaide, under contract to Geoscience Australia. These results include bulk carbon isotope ratios (δ13C) of bitumens and isolated kerogens. In addition, a selection of 10 samples was analysed at Geoscience Australia for comparison purposes.</div><div><br></div>
-
NDI Carrara 1 is a deep stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first test of the Carrara Sub-Basin, a depocentre newly discovered in the South Nicholson region based on interpretation from seismic surveys (L210 in 2017 and L212 in 2019) recently acquired as part of the Exploring for the Future program. The drill hole intersected approximately 1120 m of Proterozoic sedimentary rocks unconformably overlain by 630 m of Cambrian Georgina Basin carbonates. Continuous cores recovered from 283 m to a total depth of 1750 m provide samples of the highest quality for a comprehensive geochemical program designed to inform on the energy and mineral prospectivity of the Carrara Sub-basin. Total Organic Carbon (TOC) contents from Rock-Eval pyrolysis of the Cambrian and Proterozoic sections demonstrate the potential for several thick black shales as source rocks and unconventional plays. Evidence for retained hydrocarbons included bituminous oil stains in centimetre-scale vugs within the Cambrian Georgina Basin and several oil bleeds within the Proterozoic section. The latter also contains surface gas with up to 2% methane concentrations measured within carbonaceous mudstones. Geochemical analyses of hydrocarbon shows highlight the occurrence of several petroleum systems operating in this frontier region. The results at NDI Carrara 1 offer the promise of a new exciting resource province in northern Australia.
-
The NDI Carrara 1 sedimentology, microstructural analysis and sequence stratigraphy program was a joint undertaking between Geoscience Australia (GA) and CSIRO (Perth) as part of the Exploring for the Future program to examine the sedimentology, sequence stratigraphy and paleogeography of the Carrara Sub-basin. The program was based on recovered core from the National Drilling Initiative (NDI) deep stratigraphic drill hole, NDI Carrara 1. NDI Carrara 1 is the first drill hole to intersect the Proterozoic rocks of the Carrara Sub-Basin, a large depocentre discovered during seismic acquisition conducted during the first phase of the EFTF program in 2017. NDI Carrara 1 is located on the western flanks of the Carrara Sub-basin, reaching a total depth of 1751 m, intersecting ca. 630 m of Cambrian Georgina Basin overlying ca. 1100 m of Proterozoic carbonates, black shales and siliciclastics. This final report, and associated appendices, compiles the findings of three milestone deliverables. The first component of the report addresses the sedimentology of the Proterozoic section of NDI Carrara 1 with an accompanying Appendix (core log, from HyLogger data). The second component is a detailed microstructural analysis based on selected thin sections in intervals of interest. The final component completed a 1D sequence stratigraphic assessment, enabling regional stratigraphic correlations to be established and an interpretive paleogeographic map generated for the Proterozoic sequences of interest across the region .
-
As part of Geoscience Australia’s Exploring for the Future program, this study aims to analyse the hydrocarbon prospectivity in the Carrra Sub-basin through wireline log interpretation and shale gas reservoir characterisation. NDI Carrara 1 is the first stratigraphic test of the Carrara Sub-basin, a recently uncovered depocentre located within the South Nicholson region of the eastern Northern Territory and northwestern Queensland. Four chemostratigraphic packages were defined according to the informal sub-division of stratigraphy and inorganic geochemical properties. Wireline log interpretation has been conducted to derive the clay mineral compositions, porosity, gas saturation and gas contents for the unconventional shale gas reservoirs in the Proterozoic succession in NDI Carrara 1. The predominant clay minerals include illite/muscovite, mixed-layer clay, smectite, kaolinite, and minor contents of glauconite and chlorite. The average geothermal gradient is estimated to be 35.04 °C/km with a surface temperature of 29.4 °C. The average formation pressure gradient is calculated to be < 10.7 MPa/km from mud weight records. Artificial neural network technology is used to interpret the TOC content from wireline logs for unconventional shale gas reservoirs. TOC content is positively correlated with methane and ethane concentrations in mudlog gas profiles, shale porosity, formation resistivity and gas content for NDI Carrara 1. The organic-rich shales in P2 have favourable adsorbed, free and total gas contents. The organic-rich micrites within P3 have the potential in adsorbed gas, but with very low average gas saturation (< 0.01 m3/m3). Our interpretation has identified potential shale gas reservoirs, as well as tight non-organic-rich shales and siltstones with potential as gas reservoirs. These occur throughout several of the identified chemostratigraphic packages within the Proterozoic section of NDI Carrara 1.
-
To test existing geological interpretations and the regional stratigraphic relationships of the Carrara Sub-basin with adjacent resource-rich provinces, the deep stratigraphic drill hole NDI Carrara 1 was located on the western flanks of the Carrara Sub-basin, on the seismic line 17GA-SN1. The recovery of high quality near-continuous core from the Carrara Sub-basin, in concert with the spectrum of baseline analytical work being conducted by Geoscience Australia through the EFTF program, as well as other work by government and university researchers is greatly improving our understanding of this new basin. While recently published geochemistry baseline datasets have provided valuable insight into the Carrara Sub-basin, the age of the sedimentary rocks intersected by NDI Carrara 1 and their chronostratigraphic relationships with adjacent resource rich regions has remained an outstanding question. In this contribution, we present new sensitive high-resolution ion microprobe (SHRIMP) geochronology results from NDI Carrara 1 and establish regional stratigraphic correlations to better understand the energy and base-metal resource potential of this exciting frontier basin in northern Australia.
-
A comprehensive geochemical program was carried out on rock samples collected in the NDI Carrara 1 drill hole, the first stratigraphic test of the newly discovered Carrara Sub-basin located in the South Nicholson region of northern Australia. The drill hole recovered continuous core from 284 m to total depth at 1750 m and intersected approximately 1120 m of Proterozoic sedimentary rocks, unconformably overlain by 630 m of Cambrian Georgina Basin carbonate-rich rocks. Total organic carbon (TOC) contents from Rock-Eval pyrolysis highlight the potential for several thick black shales to be a source of petroleum for conventional and unconventional plays. Cambrian rocks contain an organic-rich section with TOC contents of up to 4.7 wt.% and excellent oil-generating potential. The Proterozoic section is overmature for oil generation but mature for gas generation, with potential for generating gas in carbonaceous mudstones showing TOC contents up to 5.5 wt.% between 680 and 725 m depth. A sustained release of methane (up to 2%) recorded during drilling from 1150 to 1500 m suggests potential for an unconventional gas system in the Proterozoic rocks from 950 to 1415 m depth, which exhibit favourable organic richness and thermal maturity. The Proterozoic rocks, which are comparable in age to the sediment-hosted deposits of the Century Mine, contain local occurrences of lead, zinc and copper sulfide minerals providing hints of mineralisation. The combined geochemical results offer the promise of a potential new resource province in northern Australia. <b>Citation:</b> E. Grosjean, A.J.M. Jarrett, C.J. Boreham, L. Wang, L. Johnson, J.M. Hope, P. Ranasinghe, J.J. Brocks, A.H.E. Bailey, G.A. Butcher, C.J. Carson, Resource potential of the Proterozoic–Paleozoic Carrara depocentre, South Nicholson region, Australia: Insights from stratigraphic drilling, <i>Organic Geochemistry</i>, Volume 186, 2023, 104688, ISSN 0146-6380, DOI: https://doi.org/10.1016/j.orggeochem.2023.104688.
-
NDI Carrara 1 is a deep stratigraphic well completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI), in collaboration with Geoscience Australia and the Northern Territory Geological Survey. It is the first stratigraphic test of the Carrara Sub-Basin, a newly discovered depocentre in the South Nicholson region. The well intersected Proterozoic sediments with numerous hydrocarbon shows, likely to be of particular interest due to affinities with the known Proterozoic plays of the Beetaloo Sub-basin and the Lawn Hill Platform, including two organic-rich black shales and a thick sequence of interbedded black shales and silty-sandstones. Alongside an extensive suite of wireline logs, continuous core was recovered from 283.9 m to total depth at 1750.8 m, providing high-quality data to support comprehensive analysis. Presently, this includes geochronology, geochemistry, geomechanics, and petrophysics. Rock Eval pyrolysis data demonstrates the potential for several thick black shales to be a source of hydrocarbons for conventional and unconventional plays. Integration of these data with geomechanical properties highlights potential brittle zones within the fine-grained intervals where hydraulic stimulation is likely to enhance permeability, identifying prospective Carrara Sub-basin shale gas intervals. Detailed wireline log analysis further supports a high potential for unconventional shale resources. Interpretation of the L210 and L212 seismic surveys suggests that the intersected sequences are laterally extensive and continuous throughout the Carrara Sub-basin, potentially forming a significant new hydrocarbon province and continuing the Proterozoic shale play fairway across the Northern Territory and northwest Queensland. This abstract was submitted and presented at the 2022 Australian Petroleum Production and Exploration Association (APPEA), Brisbane (https://appea.eventsair.com/appea-2022/)
-
<div>NDI Carrara 1 is a 1750 m stratigraphic drill hole completed in 2020 as part of the MinEx CRC National Drilling Initiative (NDI) in collaboration with Geoscience Australia under the Exploring for the Future program and the Northern Territory Geological Survey. It is the first stratigraphic test of the Carrara Sub-basin, a recently discovered depocentre in the South Nicholson region. The drill hole intersected Cambrian and Proterozoic sediments consisting of organic-rich black shales and a thick sequence of interbedded black shales and silty sandstones with hydrocarbon shows. A comprehensive analytical program carried out by Geoscience Australia on the recovered core samples from 283 m to total depth at 1751 m provides critical data for calibration of burial and thermal history modelling.</div><div>Using data from this drilling campaign, burial and thermal history modelling was undertaken to provide an estimate of the time-temperature maxima that the sub-basin has experienced, contributing to an understanding of hydrocarbon maturity. Proxy kerogen kinetics are assessed to estimate the petroleum prospectivity of the sub-basin and attempt to understand the timing and nature of hydrocarbon generation. Combined, these newly modelled data provide insights into the resource potential of this frontier Proterozoic hydrocarbon province, delivering foundational data to support explorers across the eastern Northern Territory and northwest Queensland.</div> <b>Citation:</b> Palu Tehani J., Grosjean Emmanuelle, Wang Liuqi, Boreham Christopher J., Bailey Adam H. E. (2023) Thermal history of the Carrara Sub-basin: insights from modelling of the NDI Carrara 1 drill hole. <i>The APPEA Journal</i><b> 63</b>, S263-S268. https://doi.org/10.1071/AJ22048
-
Stratigraphic drill hole NDI Carrara 1 was drilled as a collaboration between Geoscience Australia (GA), the Northern Territory Geological Survey (NTGS) and the Mineral Exploration Cooperative Research Centre (MinEx CRC). It reached a total depth of 1751 m in late 2020 and is the first drill hole to intersect the undifferentiated Proterozoic rocks of the Carrara Sub-Basin. It intersected approximately 630 m of Cambrian Georgina Basin sedimentary rocks overlying the ~1100 m of Proterozoic carbonates, black shales and other siliciclastics of the Carrara Sub-Basin succession. The formational assignments of the Georgina Basin succession are preliminary and were assigned in the field. The units intersected comprise the Border Waterhole Formation (~531m to ~630m), which is overlain by the Currant Bush Limestone (~249m to ~531m), which in turn is overlain by the Camooweal Dolostone (0m to ~249m). Of these, only the lower 80% of the Currant Bush Limestone and the entire Border Waterhole Formation were cored. This report presents biostratigraphic results from macrofossil examination of NDI Carrara 1 core samples within the Georgina Basin section.
-
Exploring for the Future (EFTF) is an Australian Government initiative that gathers new data and information about potential mineral, energy and groundwater resources. Commencing in 2016 with a focus on northern Australia, an EFTF extension to 2024 was recently announced, with expanded coverage across mainland Australia and Tasmania. The EFTF energy component aims to improve our understanding of the petroleum potential of frontier onshore Australian basins and has acquired significant pre-competitive datasets, including the recently drilled Barnicarndy 1 deep stratigraphic well in Western Australia’s Canning Basin (in partnership with the Geological Survey of Western Australia), and NDI Carrara 1 deep stratigraphic well in the South Nicholson region of the Northern Territory (in partnership with the MinEX CRC). These are the first stratigraphic wells drilled in a petroleum basin by Geoscience Australia since the formation in 2001 from its predecessor agencies. Both wells were sited along two-dimensional, deep crustal seismic surveys acquired by Geoscience Australia as part of EFTF, and provide stratigraphic control for the imaged geology. The sedimentary fill intersected by the Barnicarndy 1 and NDI Carrara 1 wells were cored and logged with a broad suite of wireline tools, providing substantial new data in two frontier basins. These data provide insights into regional stratigraphy and local lithology. Geochronology, petrographic, organic and inorganic geochemistry, petrophysical rock properties, petroleum systems elements, palaeontological, and fluid inclusion studies have been undertaken upon which inferences on regional prospectivity can made in these data-poor regions. Moving into the next phase of EFTF, these wells provide a template for new pre-competitive data acquisition by Geoscience Australia, expanding our knowledge of frontier regions making them attractive for new investment and exploration.