From 1 - 10 / 23
  • Heavy minerals (HMs) have been used successfully around the world in energy and mineral exploration, yet in Australia no public domain database or maps exist that document the background HM assemblages or distributions. Here, we describe a project that delivers the world’s first continental-scale HM maps. We applied automated mineralogical identification and quantification of the HMs contained in floodplain sediments from large catchments covering most of Australia. The composition of the sediments reflects the dominant rock types in each catchment, with the generally resistant HMs largely preserving the mineralogical fingerprint of their host protoliths through the weathering–transport–deposition cycle. Underpinning this vision was a pilot project, based on 10 samples from the national sediment sample archive, which in 2020 demonstrated the feasibility of a larger, national-scale project. Two tranches of the subsequent national HM dataset, one focusing on a 965,000 km2 region centred on Broken Hill in southeastern Australia, the other focusing on a 950,000 km2 area in northern Queensland and Northern Territory, were released in 2022. In those releases, over 47 million mineral grains were analysed in 411 samples, identifying over 150 HM species. We created a bespoke, cloud-based mineral network analysis (MNA) tool to visualize, explore and discover relationships between HMs as well as between them and geological settings or mineral deposits. We envisage that the Heavy Mineral Map of Australia and MNA tool, when released publicly by the end of 2023, will contribute significantly to mineral prospectivity analysis and modelling, particularly for technology critical elements and their host minerals <b>Citation:</b> Caritat P. de, Walker A.T., Bastrakov E. & McInnes B.I.A., 2023. From The Heavy Mineral Map of Australia: vision, implementation and progress. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/148678

  • Over 900 Australian mineral deposits, location and age data, combined with deposit classifications, have been used to assess temporal and spatial patterns of mineral deposits associated with convergent margins and allow assessment of the potential of poorly exposed or undercover mineral provinces and identification of prospective tracts within known mineral provinces. Here we present results of this analysis for the Eastern Goldfields Superterrane and the Tasman Element, which illustrate end-members of the spectrum of convergent margin metallogenic provinces. Combining our Australian synthesis with global data suggest that after ~3000 Ma these provinces are characterised by a reasonably consistent temporal pattern of deposit formation, termed the convergent margin metallogenic cycle (CMMC): volcanic-hosted massive sulfide – calc-alkalic porphyry copper – komatiite-associated nickel sulfide → orogenic gold → alkalic porphyry copper – granite-related rare metal (Sn, W and Mo) – pegmatite. Between ca 3000 Ma and ca 800 Ma, virtually all provinces are characterised by a single CMMC, but after ca 800 Ma, provinces mostly have multiple CMMCs. We interpret this change in metallogeny to reflect secular changes in tectonic style, with single-CMMC provinces associated with warm, shallow break-off subduction, and multiple-CMMC provinces associated with modern-style cold, deep break-off subduction. These temporal and spatial patterns can be used to infer potential for mineralisation outside well-established metallogenic tracts. <b>Citation:</b> Huston D. L., Doublier M. P., Eglington B., Pehrsson S., Mercier-Langevin P. & Piercey S., 2022. Convergent margin metallogenic cycling in the Eastern Goldfields Superterrane and Tasman Element. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/147037

  • <div>This contribution presents the distribution and geology of Australian alkaline and related rocks of Paleozoic age, one in a series within the Alkaline Rocks Atlas of Australia that collectively document alkaline rocks across the continent through time. </div><div><br></div><div>In general, alkaline and related rocks are a relatively rare class of igneous rocks worldwide. Alkaline rocks encompass a wide range of rock types and are mineralogically and geochemically diverse. They are typically thought to have been derived by generally small to very small degrees of partial melting of a wide range of mantle compositions. As such these rocks have the potential to convey considerable information on the evolution of the Earth’s mantle (asthenosphere and lithosphere), particularly the role of metasomatism, which may have been important in their generation, or to which such rocks may themselves have contributed. Such rocks, by their unique compositions and/or enrichments in their source protoliths, also have considerable metallogenic potential, e.g., diamonds, Th, U, Zr, Hf, Nb, Ta, REEs. It is evident that the geographic occurrences of many of these rock types are also important, and may relate to presence of old cratons, craton margins or major lithospheric breaks. Finally, many alkaline rocks also carry with them mantle xenoliths providing a snapshot of the lithospheric mantle composition at the time of their emplacement.</div><div><br></div><div>Accordingly, although alkaline and related rocks comprise only a volumetrically minor component of the geology of Australia, they are of considerable importance to studies of lithospheric composition, evolution and architecture and to helping constrain the temporal evolution of the lithosphere. They are also directly related to metallogenesis and mineralisation, particularly for a number of the critical minerals, e.g., rare earth elements, niobium. In light of this, Geoscience Australia is undertaking a compilation of the distribution and geology of Australian alkaline and related rocks, of all ages, and producing a GIS and associated database of such rocks, to both document such rocks and for use in metallogenic and mineral potential studies.&nbsp;</div><div><br></div><div>The broadening of the definition of alkaline rocks within the Alkaline Rocks Atlas herein, to include ultra-high K mafic to felsic silica-saturated rocks (alkaline-shoshonites), which are commonly formed at convergent margin settings, manifests in some divergences in the presentation of alkaline rocks that are particularly relevant to the Phanerozoic, and Paleozoic Australia in particular.&nbsp;</div><div><br></div><div>Paleozoic alkaline and related rocks occur throughout eastern Australia, with occurrences in the Northern Territory, and in all States excluding Western Australia. However, with a few exceptions they are principally located within the Tasman Element, and are over-represented in NSW – with respect to other states jurisdictions (based on available data). Paleozoic alkaline rocks range from ultramafic through to felsic, and from strongly alkaline (undersaturated) through to mildly alkaline.&nbsp;</div><div><br></div><div>Strongly alkaline rocks – congruent with the outline of alkaline rocks presented above – are comparatively rare in the Paleozoic, and are compositionally diverse incorporating alkali basalt, kimberlite, carbonatite-related rocks, and lamprophyre, with wide-ranging ages.&nbsp;</div><div><br></div><div>Overwhelmingly, the Paleozoic alkaline rock compilation is dominated by very high K alkali mafic to felsic silica-saturated rocks. Mafic-intermediate rocks within this grouping typically have an “arc signature” (i.e., low Nb/Y) but incorporate both arc magmas as well as rocks associated with backarc rifting. These rocks typically occur within rock units or packages that comprise a diverse array of rock types and compositions from volcanic rocks, related volcaniclastics and epiclastics through to sedimentary rocks. Igneous rocks within these packages commonly range from subalkaline / calc-alkaline through to mildly alkaline (trachybasalt to trachyandesite, and less commonly trachyte) based on alkali contents. Quartz-saturated felsic alkaline rocks are dominated by near peralkaline–peralkaline A-types and high-temperature transitional I-A compositions, but locally include rarer mildly alkaline (based on HFSE) rocks. The inclusion of whole rock units, which may only incorporate a small volume of alkaline rocks, necessarily means that the volume of these alkaline rocks is both poorly constrained and over-represented with this dataset.</div><div><br></div>

  • <div>Alkaline and related rocks are a relatively rare class of igneous rocks worldwide. Alkaline rocks encompass a wide range of rock types and are mineralogically and geochemically diverse. They are typically though to have been derived by generally small to very small degrees of partial melting of a wide range of mantle compositions. As such these rocks have the potential to convey considerable information on the evolution of the Earth’s mantle (asthenosphere and lithosphere), particularly the role of metasomatism which may have been important in their generation or to which such rocks may themselves have contributed. Such rocks, by their unique compositions and or enriched source protoliths, also have considerable metallogenic potential, e.g., diamonds, Th, U, Zr, Hf, Nb, Ta, REEs. It is evident that the geographic occurrences of many of these rock types are also important, and may relate to presence of old cratons, craton margins or major lithospheric breaks. Finally, many alkaline rocks also carry with them mantle xenoliths providing a snapshot of the lithospheric mantle composition at the time of their emplacement.</div><div><br></div><div>Accordingly, although alkaline and related rocks comprise only a volumetrically minor component of the geology of Australia, they are of considerable importance to studies of lithospheric composition, evolution and architecture and to helping constrain the temporal evolution of the lithosphere, as well as more directly to metallogenesis and mineralisation.</div><div><br></div><div>This contribution presents data on the distribution and geology of Australian alkaline and related rocks of Proterozoic age. Proterozoic alkaline and related rocks are primarily restricted to the western two-thirds of the Australia continent, congruent with the distribution of Proterozoic rocks more generally. Proterozoic alkaline rock units are most abundant in Western Australia and the Northern Territory, with minor occurrences in South Australia, and the western regions of Queensland, New South Wales and Tasmania.</div><div><br></div><div>The report and accompanying GIS document the distribution, age, lithology, mineralogy and other characteristics of these rocks (e.g., extrusive/intrusive, presence of mantle xenoliths, presence of diamonds), as well as references for data sources and descriptions. The report also reviews the nomenclature of alkaline rocks and classification procedures. GIS metadata are documented in the appendices.&nbsp;</div>

  • <div>We present the first national-scale lead (Pb) isotope maps of Australia based on surface regolith for five isotope ratios, <sup>206</sup>Pb/<sup>204</sup>Pb, <sup>207</sup>Pb/<sup>204</sup>Pb, <sup>208</sup>Pb/<sup>204</sup>Pb, <sup>207</sup>Pb/<sup>206</sup>Pb, and <sup>208</sup>Pb/<sup>206</sup>Pb, determined by single collector Sector Field-Inductively Coupled Plasma-Mass Spectrometry after an Ammonium Acetate leach followed by Aqua Regia digestion. The dataset is underpinned principally by the National Geochemical Survey of Australia (NGSA) archived floodplain sediment samples. We analysed 1219 ‘top coarse’ (0-10 cm depth, &lt;2 mm grain size) samples, collected near the outlet of 1098 large catchments covering 5.647 million km2 (~75% of Australia). This paper focusses on the Aqua Regia dataset. The samples consist of mixtures of the dominant soils and rocks weathering in their respective catchments (and possibly those upstream) and are therefore assumed to form a reasonable representation of the average isotopic signature of those catchments. This assumption was tested in one of the NGSA catchments, within which 12 similar ‘top coarse’ samples were also taken; results show that the Pb isotope ratios of the NGSA catchment outlet sediment sample are close to the average of the 12 sub-catchment, upstream samples. National minimum, median and maximum values reported for <sup>206</sup>Pb/<sup>204</sup>Pb were 15.558, 18.844, 30.635; for <sup>207</sup>Pb/<sup>204</sup>Pb 14.358, 15.687, 18.012; for <sup>208</sup>Pb/<sup>204</sup>Pb 33.558, 38.989, 48.873; for <sup>207</sup>Pb/<sup>206</sup>Pb 0.5880, 0.8318, 0.9847; and for <sup>208</sup>Pb/<sup>206</sup>Pb 1.4149, 2.0665, 2.3002, respectively. The new dataset was compared with published bedrock and ore Pb isotope data, and was found to dependably represent crustal elements of various ages from Archean to Phanerozoic. This suggests that floodplain sediment samples are a suitable proxy for basement and basin geology at this scale, despite various degrees of transport, mixing, and weathering experienced in the regolith environment, locally over protracted periods of time. An example of atmospheric Pb contamination around Port Pirie, South Australia, where a Pb smelter has operated since the 1890s, is shown to illustrate potential environmental applications of this new dataset. Other applications may include elucidating detail of Australian crustal evolution and mineralisation-related investigations.&nbsp;</div> <b>Citation:</b> Desem, C. U., de Caritat, P., Woodhead, J., Maas, R., and Carr, G.: A regolith lead isoscape of Australia, <o>Earth Syst. Sci. Data</i>, 16, 1383–1393, https://doi.org/10.5194/essd-16-1383-2024, 2024.

  • Australian iron ore is predominantly exported and used for steelmaking internationally. However, steelmaking is an energy- and carbon-intensive heavy industry, and its electrification in the coming decades will likely disrupt the existing iron ore–steel value chains. Green steel—produced using hydrogen and electricity from renewable energy sources—presents both opportunities and challenges for Australia. Indeed, with abundant renewable energy potential and iron-ore resources, Australia could lead this global transformation. Here, we examine the interrelationships between the Australian iron-ore industry, the production of green-hydrogen from renewable energy sources, and an emergent green steelmaking process. In particular, we undertake detailed case studies to estimate current green steel production costs within two regions; the Pilbara Craton in Western Australia and the Eyre Peninsula in South Australia. While existing technology is not well suited to Australian hematite ores, our analysis highlights the site-specific competitiveness of small-scale, magnetite-fed, off-grid operations. The results underscore the advantages of a well-optimised system in decreasing hydrogen and energy storage requirements, and decreasing production costs. While our results also suggest that grid-connected projects could reduce costs through flexible operation, more work is required to understand the limitations of these conclusions. The results underscore the need to develop technologies to utilise hematite ores in green steelmaking, but also highlight the opportunity for this emerging industry to commercialise Australia’s magnetite resources. <b>Citation: </b>Wang C., Walsh S. D. C., Haynes M. W., Weng Z., Feitz A., Summerfield D., & Lutalo I., 2022. From Australian iron ore to green steel: the opportunity for technology-driven decarbonisation. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/147005

  • The discovery of strategically located salt structures, which meet the requirements for geological storage of hydrogen, is crucial to meeting Australia’s ambitions to become a major hydrogen producer, user and exporter. The use of the AusAEM airborne electromagnetic (AEM) survey’s conductivity sections, integrated with multidisciplinary geoscientific datasets, provides an excellent tool for investigating the near-surface effects of salt-related structures, and contributes to assessment of their potential for underground geological hydrogen storage. Currently known salt in the Canning Basin includes the Mallowa and Minjoo salt units. The Mallowa Salt is 600-800 m thick over an area of 150 × 200 km, where it lies within the depth range prospective for hydrogen storage (500-1800 m below surface), whereas the underlying Minjoo Salt is generally less than 100 m thick within its much smaller prospective depth zone. The modelled AEM sections penetrate to ~500 m from the surface, however, the salt rarely reaches this level. We therefore investigate the shallow stratigraphy of the AEM sections for evidence of the presence of underlying salt or for the influence of salt movement evident by disruption of near-surface electrically conductive horizons. These horizons occur in several stratigraphic units, mainly of Carboniferous to Cretaceous age. Only a few examples of localised folding/faulting have been noted in the shallow conductive stratigraphy that have potentially formed above isolated salt domes. Distinct zones of disruption within the shallow conductive stratigraphy generally occur along the margins of the present-day salt depocentre, resulting from dissolution and movement of salt during several stages. This study demonstrates the potential AEM has to assist in mapping salt-related structures, with implications for geological storage of hydrogen. In addition, this study produces a regional near-surface multilayered chronostratigraphic interpretation, which contributes to constructing a 3D national geological architecture, in support of environmental management, hazard mapping and resource exploration. <b>Citation: </b>Connors K. A., Wong S. C. T., Vilhena J. F. M., Rees S. W. & Feitz A. J., 2022. Canning Basin AusAEM interpretation: multilayered chronostratigraphic mapping and investigating hydrogen storage potential. In: Czarnota, K (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146376

  • <div>The Proterozoic alkaline and related igneous rocks of Australia is a surface geology compilation of alkaline and related igneous rocks of Proterozoic age in Australia. This dataset is one of five datasets, with compilations for Archean, Paleozoic, Mesozoic and Cenozoic alkaline and related igneous rocks already released.</div><div><br></div><div>Geological units are represented as polygon and point geometries and, are attributed with information that includes, but is not limited to, stratigraphic nomenclature and hierarchy, age, lithology, composition, proportion of alkaline rocks, body morphology, unit expression, emplacement type, presence of mantle xenoliths and diamonds, and primary data source. Source data for the geological unit polygons provided in Data Quality LINEAGE. Geological units are grouped into informal geographic “alkaline provinces”, which are represented as polygon geometries, and attributed with information similar to that provided for the geological units.</div>

  • <div>This data package contains interpretations of airborne electromagnetic (AEM) conductivity sections in the Exploring for the Future (EFTF) program’s Eastern Resources Corridor (ERC) study area, in south eastern Australia. Conductivity sections from 3 AEM surveys were interpreted to provide a continuous interpretation across the study area – the EFTF AusAEM ERC (Ley-Cooper, 2021), the Frome Embayment TEMPEST (Costelloe et al., 2012) and the MinEx CRC Mundi (Brodie, 2021) AEM surveys. Selected lines from the Frome Embayment TEMPEST and MinEx CRC Mundi surveys were chosen for interpretation to align with the 20&nbsp;km line-spaced EFTF AusAEM ERC survey (Figure 1).</div><div>The aim of this study was to interpret the AEM conductivity sections to develop a regional understanding of the near-surface stratigraphy and structural architecture. To ensure that the interpretations took into account the local geological features, the AEM conductivity sections were integrated and interpreted with other geological and geophysical datasets, such as boreholes, potential fields, surface and basement geology maps, and seismic interpretations. This approach provides a near-surface fundamental regional geological framework to support more detailed investigations. </div><div>This study interpreted between the ground surface and 500&nbsp;m depth along almost 30,000 line kilometres of nominally 20&nbsp;km line-spaced AEM conductivity sections, across an area of approximately 550,000&nbsp;km2. These interpretations delineate the geo-electrical features that correspond to major chronostratigraphic boundaries, and capture detailed stratigraphic information associated with these boundaries. These interpretations produced approximately 170,000 depth estimate points or approximately 9,100 3D line segments, each attributed with high-quality geometric, stratigraphic, and ancillary data. The depth estimate points are formatted for compliance with Geoscience Australia’s (GA) Estimates of Geological and Geophysical Surfaces (EGGS) database, the national repository for standardised depth estimate points. </div><div>Results from these interpretations provided support to stratigraphic drillhole targeting, as part of the Delamerian Margins NSW National Drilling Initiative campaign, a collaboration between GA’s EFTF program, the MinEx CRC National Drilling Initiative and the Geological Survey of New South Wales. The interpretations have applications in a wide range of disciplines, such as mineral, energy and groundwater resource exploration, environmental management, subsurface mapping, tectonic evolution studies, and cover thickness, prospectivity, and economic modelling. It is anticipated that these interpretations will benefit government, industry and academia with interest in the geology of the ERC region.</div>

  • The High Quality Geophysical Analysis (HiQGA) package is a fully-featured, Julia-language based open source framework for geophysical forward modelling, Bayesian inference, and deterministic imaging. A primary focus of the code is production inversion of airborne electromagnetic (AEM) data from a variety of acquisition systems. Adding custom AEM systems is simple using Julia’s multiple dispatch feature. For probabilistic spatial inference from geophysical data, only a misfit function needs to be supplied to the inference engine. For deterministic inversion, a linearisation of the forward operator (i.e., Jacobian) is also required. HiQGA is natively parallel, and inversions from a full day of production AEM acquisition can be inverted on thousands of CPUs within a few hours. This allows for quick assessment of the quality of the acquisition, and provides geological interpreters preliminary subsurface images of EM conductivity together with associated uncertainties. HiQGA inference is generic by design – allowing for the analysis of diverse geophysical data. Surface magnetic resonance (SMR) geophysics for subsurface water-content estimation is available as a HiQGA plugin through the SMRPInversion (SMR probabilistic inversion) wrapper. The results from AEM and/or SMR inversions are used to create images of the subsurface, which lead to the creation of geological models for a range of applications. These applications range from natural resource exploration to its management and conservation.