From 1 - 10 / 19
  • The Exploring for the Future program Showcase 2023 was held on 15-17 August 2023. Day 3 - 17th August talks included: Geological Processes and Resources Session Large scale hydrogen storage: The role of salt caverns in Australia’s transition to net zero – Dr Andrew Feitz Basin-Hosted Base Metal Deposits – Dr Evgeniy Bastrakov Upper Darling Floodplain: Groundwater dependent ecosystem assessment – Dr Sarah Buckerfield Atlas of Australian Mine Waste: Waste not, want not – Jane Thorne Resource Potential Theme National-scale mineral potential assessments: supporting mineral exploration in the transition to net zero – Dr Arianne Ford Australia’s Onshore Basin Inventories: Energy – Tehani Palu Prioritising regional groundwater assessments using the national hydrogeological inventory – Dr Steven Lewis Assessing the energy resources potential in underexplored regions – Dr Barry Bradshaw You can access the recording of the talks from YouTube here: <a href="https://youtu.be/pc0a7ArOtN4">2023 Showcase Day 3 - Part 1</a> <a href="https://youtu.be/vpjoVYIjteA">2023 Showcase Day 3 - Part 2</a>

  • Underground hydrogen storage (UHS) in halite caverns will become an essential technology to supplement energy supply networks. This study examines the feasibility of UHS in the offshore Polda Basin by integrating previous seismic interpretation, well data and regional geology information. The Mercury structure in the central – east Polda Basin has extensive halite accumulations (both vertically and laterally) and has been identified as an area with high UHS potential. The net halite thickness is more than 1000 m, while the total potential area is about 217 km². Well data from the Mercury 1 well show a low thermal gradient (1.7–2.1 °C/100m) and overburden pressure gradient of approximately 18 ppg, providing effective gas operation pressure for UHS. To illustrate the feasibility of UHS, a conceptual design of a halite cavern is provided for a depth range of 1650–2000 m. Caverns with diameters of 60 m and 100 m are estimated to have storage capacities of approximately 240 GWh and 665 GWh, respectively. Multiple halite caverns could be constructed within the extensive Mercury halite accumulation. Further investigation into the potential for salt accumulations in the onshore Polda Basin is recommended. <b>Citation: </b>Feitz A. J., Wang L., Rees S. & Carr L., 2022. Feasibility of underground hydrogen storage in a salt cavern in the offshore Polda Basin. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146501

  • <div>The Adavale Basin is located approximately 850 km west-northwest of Brisbane and southwest of Longreach in south-central Queensland. The basin system covers approximately 100,000 km2 and represents an Early to Late Devonian (Pragian to Famennian) depositional episode, which was terminated in the Famennian by widespread contractional deformation, regional uplift and erosion. </div><div>Burial and thermal history models were constructed for nine wells using existing open file data to assess the lateral variation in maturity and temperature for potential source rocks in the Adavale Basin, and to provide an estimate of the hydrocarbon generation potential in the region.</div>

  • The Exploring for the Future program Showcase 2023 was held on 15-17 August 2023. Day 1 - 15th August talks included: Resourcing net zero – Dr Andrew Heap Our Geoscience Journey – Dr Karol Czarnota You can access the recording of the talks from YouTube here: <a href="https://youtu.be/uWMZBg4IK3g">2023 Showcase Day 1</a>

  • All commercially produced hydrogen worldwide is presently stored in salt caverns. In eastern Australia, the only known thick salt accumulations are found in the Boree Salt of the Adavale Basin in central Queensland. Although the number of wells penetrating the basin is limited, salt intervals up to 555 m thick have been encountered. The Boree Salt consists predominantly of halite and is considered to be suitable for hydrogen storage. Using well data and historical 2D seismic interpretations, we have developed a 3D model of the Adavale Basin, particularly focussing on the thicker sections of the Boree Salt. Most of the salt appears to be present at depths greater than 2000 m, but shallower sections are found in the main salt body adjacent to the Warrego Fault and to the south at the Dartmouth Dome. The preliminary 3D model developed for this study has identified three main salt bodies that may be suitable for salt cavern construction and hydrogen storage. These are the only known large salt bodies in eastern Australia and therefore represent potentially strategic assets for underground hydrogen storage. There are still many unknowns, with further work and data acquisition required to fully assess the suitability of these salt bodies for hydrogen storage. Recommendations for future work are provided. <b>Citation:</b> Paterson R., Feitz A. J., Wang L., Rees S. & Keetley J., 2022. From A preliminary 3D model of the Boree Salt in the Adavale Basin, Queensland. In: Czarnota, K. (ed.) Exploring for the Future: Extended Abstracts, Geoscience Australia, Canberra, https://dx.doi.org/10.26186/146935

  • Internationally, the number of carbon capture and storage (CCS) projects has been increasing with more than 61 new CCS facilities added to operations around the globe in 2022, including six projects in Australia (GCCSI, 2022). The extraction of reservoir fluid will be an essential component of the CCS workflow for some of projects in order to manage reservoir pressure variations and optimise the subsurface storage space. While we refer to reservoir fluid as brine throughout this paper for simplicity, reservoir fluids can range from brackish to more saline (briny) water. Brine management requires early planning, as it has implications for the project design and cost, and can even unlock new geological storage space in optimal locations. Beneficial use and disposal options for brine produced as a result of carbon dioxide (CO2) storage has been considered at a regional or national scale around the world, but not yet in Australia. For example, it may be possible to harvest energy, water, and mineral resources from extracted brine. Here, we consider how experiences in brine management across other Australian industries can be transferred to domestic CCS projects.

  • <div>Carbon capture and storage (CCS) is gaining momentum globally. The Global CCS Institute notes in their Status of CCS 2023 report that there are 26 carbon capture and storage projects under construction and a further 325 projects in development, with a total capture capacity of 361 million tonnes per year (Mt/y) of carbon dioxide (CO2). Some CCS projects require the extraction of brackish or saline water (referred to here on in as brine) from the storage formation to manage increased pressure resulting from CO2 injection and/or to optimise subsurface storage space. It is important to consider the management of extracted brine as the CCS industry scales up due to implications for project design, cost and location as well as for the responsible management of the ‘waste’ or by-product brine. The use and disposal of reservoir brine has been investigated for CCS projects around the world, but not for Australian conditions. We have undertaken this review to explore how extracted brine could potentially be managed by CCS projects across Australia.&nbsp;</div>

  • This data package provides seismic interpretations that have been generated in support of the energy resource assessments under the Australia’s Future Energy Resources (AFER) project. Explanatory notes are also included. The AFER project is part of Geoscience Australia’s Exploring for the Future (EFTF) Program—an eight year, $225 million Australian Government funded geoscience data and precompetitive information acquisition program to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, Geoscience Australia is building a national picture of Australia’s geology and resource potential. This will help support a strong economy, resilient society and sustainable environment for the benefit of all Australians. The EFTF program is supporting Australia’s transition to a low emissions economy, industry and agriculture sectors, as well as economic opportunities and social benefits for Australia’s regional and remote communities. Further details are available at http://www.ga.gov.au/eftf. The seismic interpretations build on the recently published interpretations by Szczepaniak et al. (2023) by providing updated interpretations in the AFER Project area for the Top Cadna-owie (CC10) and Top Pre-Permian (ZU) horizons, as well as interpretations for 13 other horizons that define the tops of play intervals being assessed for their energy resource potential (Figure 1). Seismic interpretations for the AFER Project are constrained by play interval tops picked on well logs that have been tied to the seismic profiles using time-depth data from well completion reports. The Pedirka and Western Eromanga basins are underexplored and contain relatively sparse seismic and petroleum well data. The AFER Project has interpreted play interval tops in 41 wells, 12 seismic horizons (Top Cadna-owie and underlying horizons) on 238 seismic lines (9,340 line kilometres), and all 15 horizons on 77 recently reprocessed seismic lines (3,370 line kilometres; Figure 2). Note that it has only been possible to interpret the Top Mackunda-Winton, Top Toolebuc-Allaru and Top Wallumbilla horizons on the reprocessed seismic lines as these are the only data that provide sufficient resolution in the shallow stratigraphic section to confidently interpret seismic horizons above the Top Cadna-owie seismic marker. The seismic interpretations are provided as point data files for 15 horizons, and have been used to constrain the zero edges for gross-depositional environment maps in Bradshaw et al. (2023) and to produce depth-structure and isochore maps for each of the 14 play intervals in Iwanec et al. (2023). The data package includes the following datasets: 1) Seismic interpretation point file data in two-way-time for up to 15 horizons using newly reprocessed seismic data and a selection of publicly available seismic lines (Appendix A). 2) Geographical layers for the seismic lines used to interpret the top Cadna-owie and underlying horizons (Cadnaowie_to_TopPrePermian_Interpretation.shp), and the set of reprocessed lines used to interpret all 15 seismic horizons (All_Horizons_Interpretation.shp; Appendix B). These seismic interpretations are being used to support the AFER Project’s play-based energy resource assessments in the Pedirka and Western Eromanga basins.

  • The ‘Australia’s Future Energy Resources’ (AFER) project is a four-year multidisciplinary investigation of the potential energy commodity resources in selected onshore sedimentary basins. The resource assessment component of the project incorporates a series of stacked sedimentary basins in the greater Pedirka-western Eromanga region in eastern central Australia. Using newly reprocessed seismic data and applying spatially enabled, exploration play-based mapping tools, a suite of energy commodity resources have been assessed for their relative prospectivity. One important aspects of this study has been the expansion of the hydrocarbon resource assessment work flow to include the evaluation of geological storage of carbon dioxide (GSC) opportunities. This form of resource assessment is likely to be applied as a template for future exploration and resource development, since the storage of greenhouse gases has become paramount in achieving the net-zero emissions target. It is anticipated that the AFER project will be able to highlight future exploration opportunities that match the requirement to place the Australian economy firmly on the path of decarbonisation.

  • <div>The Carpentaria Basin is a Mesozoic basin located in the northernmost part of Australia and is centered around the Gulf of Carpentaria . It forms part of the Great Australian Superbasin that includes the Eromanga, Surat, Nambour and Clarence-Morton basins to the south, the Laura Basin, to the east, and the Papuan Basin to the north. In a west-east direction it extends for about 1250 km from the area of Katherine in the Northern Territory to the Great Dividing Range in Queensland. A small portion of the basin reaches the east coast of Queensland in the Olive River region. In a north-south direction it extends for over 1000 km from Cape York to Cloncurry, in Queensland. The basin has a total area of over 750,000 km2, comparable in size to the state of New South Wales. From a geographic standpoint the sediments of the Carpentaria Basin occur in three areas: offshore below the Gulf of Carpentaria, onshore to the west in the Northern Territory, and onshore to the east in Queensland. This report focuses on the geology and energy resource potential of the onshore areas of the basin but, to provide a broader understanding of the basin evolution there is, of necessity, some discussion of the geology offshore.</div><div><br></div>