From 1 - 10 / 53
  • <div>The Australian Government’s Data Driven Discoveries program has reprocessed 60 selected multi-era legacy seismic lines, covering approximately 2,520 km across the Adavale Basin, south-central Queensland. Reprocessing of legacy seismic data from the Adavale Basin aims to create a modern, consistent and integrated seismic dataset that provides new insights into the geological structure of the basin and deepens our understanding of the basin’s minerals, energy, underground storage and groundwater potential.</div><div><br></div><div>The reprocessed lines were chosen to tie into 5 wells that were previously sampled for chemostratigraphic analysis through the Data Driven Discoveries program (Riley et al., 2023, eCat 147773), including Allendale 1, Boree 1, Gilmore 1, Quilberry 1 and Stafford 1. The Adavale Basin 2D Reprocessed Seismic Data Package also complements new deep crustal seismic data being acquired in the Adavale Basin by the program.</div><div><br></div><div>The reprocessing workflow prioritised enhancing the image quality of the selected legacy seismic lines, reducing noise, and fine-tuning frequency content for specific target depths. Techniques employed included creating a 3D static model, applying noise attenuation methods, surface-consistent deconvolution, and constructing an accurate velocity model to optimise pre-stack time and depth migration. </div><div><br></div><div>Both stacks and gather data are provided in SEG-Y format, along with navigation data, velocity, and statics.</div><div><strong>&nbsp;</strong></div><div><strong>Processed gather data for this survey are available on request from clientservices@ga.gov.au - Quote eCat# 149018</strong></div>

  • <div>The Australian Government's Trusted Environmental and Geological Information program is a collaboration between Geoscience Australia and CSIRO. Part of this program includes baseline geological and environmental assessments. </div><div> Hydrogeological information has been collated for the Adavale, Cooper, Galilee and north Bowen basins and overlying basins, including the Eromanga and Lake Eyre basins. This information will provide a regionally-consistent baseline dataset that will be used to develop groundwater conceptualisation models.</div><div> Publicly-available data within these basin regions have been compiled from over 30&nbsp;000 boreholes, 120 stream gauges, and 1100 rainfall stations, resulting in revised hydrostratigraphic frameworks. From the published literature, 14 major hydrostratigraphic units are recognised within the basin regions. For each of these major hydrostratigraphic units, we determined the salinity, Darcian yield, specific yield/storativity, groundwater reserve volume for unallocated groundwater, groundwater levels/hydrological pressure, likelihood of inter-aquifer connectivity, rainfall, connectivity between surface water and groundwater, and water-use volume statistics, where relevant, for each basin, hydrogeological province and aquifer. We then adopted a play-based approach to develop holistic hydrostratigraphic conceptualisations of the basin regions. </div><div> Within the Adavale Basin we have defined a new hydrogeological province including two new aquifers defined as the moderate salinity and moderately overpressured Buckabie-Etonvale Aquifer, and the hypersaline and hyper-overpressured Lissoy-Log Creek-Eastwood Aquifer. Similarities between the upper Buckabie-Etonvale Aquifer of the Adavale Basin and lowermost Joe Joe Group of the Galilee Basin suggests connectivity between the upper Adavale and lower Galilee basins. Hydraulic pressures (up to 1500 m of excess freshwater head) calculated for the Lissoy–Log Creek–Eastwood Aquifer indicate that if the aquifer was to be breached, there is potential localised risk to overlying aquifers and surface environments, including infrastructure.</div><div><br></div><div><strong>Author Biography:</strong></div><div>Dr. Chris Gouramanis is a hydrogeologist working in the Trusted Environmental and Geological Information program, in the Minerals, Energy and Groundwater Division of Geoscience Australia. Chris was awarded his PhD from The Australian National University in 2009 and has held several water and environmental policy positions within the Australian Government. He worked for 10 years as an academic at the Earth Observatory of Singapore and the Geography Department at the National University of Singapore. He is also Australia’s National Focal Point to the Scientific and Technical Review Panel of the Ramsar Convention on Wetlands.</div><div><br></div>This Abstract was submitted/presented to the 2022 Australasian Groundwater Conference 21-23 November (https://agc2022.com.au/)

  • Publicly available baseline surface water data are compiled to provide a common information base for resource development and regulatory decisions in the Adavale Basin region. This data guide captures existing knowledge of the catchments and watercourses overlying the Adavale Basin, including streamflow quality and quantity, inundation, and climatological data. The Adavale Basin underlies 3 main surface water catchments that contribute to Cooper Creek, including the Barcoo, Bulloo and Warrego rivers. The Adavale Basin geological boundary also intersects the upper parts of the Paroo River catchment and a small part of the Condamine-Balonne catchment. The data on the catchments overlying the Adavale Basin have been summarised at a point in time to inform decisions on resource development activities. Key data sources are the Water Monitoring Information Portal (Queensland Government), Water Data Online (Bureau of Meteorology), DEA Water Observations (Geoscience Australia) and Terrestrial Ecosystem Research Network.

  • A large proportion of Australia’s onshore sedimentary basins remain exploration frontiers. Industry interest in these basins has recently increased due to the global and domestic energy demand, and the growth in unconventional hydrocarbon exploration. In 2016 and 2018, Geoscience Australia released an assessment of several central Australian basins that summarised the current status of geoscientific knowledge and petroleum exploration, and the key questions, for each basin. This publication provides a comprehensive assessment of the geology, petroleum systems, exploration status and data coverage for the Adavale Basin.

  • Publicly available groundwater data have been compiled to provide a common information base to inform environmental, resource development and regulatory decisions in the Adavale Basin region. This data guide gives examples of how these data can be used. The data package included with this data guide captures existing knowledge of Eromanga Basin aquifers in the Adavale Basin region and their properties, including salinity, water levels, resource size, potential aquifer yield and surface water interactions. The methods used to derive these data for all Eromanga Basin aquifers in the Adavale Basin region are outlined in the associated metadata files. These are described in groundwater conceptual models (Gouramanis et al., 2023). The Eromanga Basin overlying the Adavale Basin includes 5 broadly defined aquifer intervals: from deepest to shallowest, these are the Poolowanna, Hutton, Adori, Cadna-owie–Hooray and Winton-Mackunda aquifers. Compiled data are assigned to these intervals and used to characterise groundwater systems at the basin scale. The data are compiled for a point-in-time to inform decisions on potential resource developments in the Basin. The available historical groundwater data can be used to assess the potential effects on groundwater. The data can also be used for other purposes, such as exploring unallocated groundwater resource potential. Data to January 2022 are used for this compilation.

  • Publicly available groundwater data have been compiled to inform environmental, resource development and regulatory decisions in the Adavale Basin region. This web service summarises salinity, water levels, resource size, potential aquifer yield and surface water–groundwater interactions for the Eromanga Basin located within the Adavale Basin region.

  • The potential for hydrogen production in the Adavale Basin region is assessed to provide a joint information base for hydrogen generation potential from renewable energy, groundwater, and natural gas coupled with carbon capture and storage (CCS). This web service summarises hydrogen potential in the Adavale Basin region.

  • Large-scale storage of commercially produced hydrogen worldwide is presently stored in salt caverns. Through the Exploring for the Future program, Geoscience Australia is identifying and mapping salt deposits in Australia that may be suitable for hydrogen storage. The Boree Salt in the Adavale Basin of central Queensland is the only known thick salt accumulation in eastern Australia, and represent potentially strategic assets for underground hydrogen storage. The Boree Salt consists predominantly of halite and can be up to 555 m thick in some wells. Geoscience Australia contracted CSIRO to conduct analyses four Boree Salt whole cores extracted from Boree 1 and Bury 1 wells. The tests were carried out to determine the seal capacity (mercury injection capillary pressure - MICP), mineralogy (X-ray diffraction - XRD), and inorganic geochemistry of the cores. The entire core sections were scanned using X-ray CT images. In addition, four plugs were taken from the cores and tested for dry bulk density, grain density, gas porosity, and permeability. Two plugs underwent ultra-low permeability tests. The MICP test suggests that the Boree Salt is a competent seal for hydrogen storage. Mineralogy testing (XRD) revealed that the Boree Salt samples primarily comprise halite (96.5%), minor anhydrite (1.32%) and dolomite (1.65%) with traces of quartz, calcite, sylvite and cristobalite. Inorganic geochemistry results show sodium (Na; 55.4% average) is the most abundant element. Further tests, such as the creep test, in-situ seal capacity test, and leaching tests, are required to determine the suitability of the Boree Salt for underground hydrogen storage. Disclaimer: Geoscience Australia has tried to make the information in this product as accurate as possible. However, it does not guarantee that the information is totally accurate or complete. Therefore, you should not solely rely on this information when making a commercial decision. This dataset is published with the permission of the CEO, Geoscience Australia.

  • Publicly available geology data are compiled to provide a common information base for resource development and regulatory decisions in the Adavale Basin region. This data guide gives examples of how the compiled data can be used. It supports a data package that presents core photographs, existing knowledge of the stratigraphy, and structural elements for the Adavale Basin and the overlying Galilee, Eromanga, Lake Eyre and other Cenozoic basins. Stratigraphic frameworks capture the geological groups and formations that make up the sedimentary sequence in the Adavale Basin region. The Adavale Basin includes 9 stratigraphic formations (Wainman et al., 2023). Overlying the Adavale Basin are the geological formations of the Galilee, Eromanga, Lake Eyre and other Cenozoic basins. The frameworks include the stratigraphic intervals used by the Trusted Environmental and Geological Information (TEGI) Program. From the base of the Adavale Basin to the top of overlying Cenozoic basins, the sedimentary sequence is categorised into 24 play intervals for resource assessment mapping and 12 hydrostratigraphic intervals for characterising groundwater systems (Wainman et al., 2023). Structural elements maps summarise where the sedimentary sequence has been deposited and later deformed by crustal movements. Structure information is used in assessing the geological potential for resources and interpreting groundwater flow and connectivity at the basin scale. The stratigraphic frameworks and structural elements provide the basic geological context for the Adavale Basin region resource and environmental assessments.

  • Publicly available data was compiled to provide a common information base for resource development, and environmental and regulatory decisions in the Adavale Basin. This data guide gives examples of how these data can be used to create the components of a workflow to identify geological storage of carbon dioxide (CO2) opportunities. The data guide is designed to support the data package that provide insights on the geological storage of CO2 in the Adavale Basin. The geological storage assessment for the Adavale Basin encompasses 8 geological intervals, termed plays – these intervals have been defined by Wainman et al. (2023). The assessment captures data from well completion reports and government data sources (e.g. Queensland Petroleum Exploration Database (QPED) from the Geological Survey of Queensland (GSQ) Open Data Portal) to inform the 4 components required for a potential geological storage of CO2 system. Thirty-nine boreholes in the Adavale Basin were used to map out gross depositional environments and their geological properties relevant for geological storage of CO2. From these datasets, the following properties have been evaluated and mapped across the basin: injectivity, storage efficiency, containment and structural complexity. The data are compiled at a point in time to inform decisions on resource development opportunities. The data guide outlines the play-based workflow for assessing geological storage of CO2 prospectivity. Each of the elements required for a prospective geological storage of CO2 system are explained and mapped. These data were then merged and spatially multiplied to show the relative assessment of geological storage of CO2 prospectivity across the basin at both play and basin scale. As an example of assessments contained within the data package, this data guide showcases the geological storage of CO2 prospectivity in the Gumbardo Play interval.