From 1 - 1 / 1
  • <div>Building on the national-scale thermochemical tomographic inversions of Haynes & Afonso (2023), we infer regions of subduction-driven metasomatic alteration within the Australia sub-continental lithospheric mantle. Such regions are inferred on the basis of age-corrected magnesium number anomalies for bulk composition of the lithospheric mantle, and the spatial correlation of these features with electrical conductors. This defines a mappable criteria for mineral system conceptual models focused on the transport of melts from re-enriched upper mantle sources. Mapping this feature through stochastic uncertainty propogation of inferred mantle compositions enables us to quantify the level of agreement in the spatial constraints on the feature. Here, we present a voting map that quantifies the relative presence or absence of such features across Australia under any arbitrary model realisation.</div><div><br></div><div>Geoscience Australia's Exploring for the Future program provides precompetitive information to inform decision-making by government, community and industry on the sustainable development of Australia's mineral, energy and groundwater resources. By gathering, analysing and interpreting new and existing precompetitive geoscience data and knowledge, we are building a national picture of Australia's geology and resource potential. This leads to a strong economy, resilient society and sustainable environment for the benefit of all Australians. This includes supporting Australia's transition to a low emissions economy, strong resources and agriculture sectors, and economic opportunities and social benefits for Australia's regional and remote communities. The Exploring for the Future program, which commenced in 2016, is an eight year, $225m investment by the Australian Government.</div>