From 1 - 2 / 2
  • <div>This study aims to understand both the burial and thermal history of the Carrara Sub-basin to further develop an understanding of possible geo-energy resources, particularly that for unconventional resources such as shale gas. A 1D and 2D model were developed using data from the above mentioned seismic and drilling campaigns, combined with previously published knowledge of the basin. This work contributes to Australia’s Future Energy Resources (AFER) Project, specifically the Onshore Basin Inventories study, which aims to promote exploration and investment in selected underexplored onshore basins. Inventory reports and petroleum systems modelling are being undertaken in select basins to highlight the oil and gas potential in underexplored provinces and to increase the impact of existing datasets.</div><div><br></div>

  • The Otway Basin is a broadly northwest-southeast trending basin and forms part of a rift system that developed along Australia’s southern margin. It represents an established hydrocarbon province with mostly onshore and shallow-water offshore discoveries. However, the outboard deep-water Otway Basin, with water depths up to 6300 m, is comparatively underexplored and can be considered a frontier area. Following the completion of a basin-wide seismic depth-imaging program (Part 1; Lee et al 2021) and insights from the revised seismic interpretation (Part 2; Karvelas et al. 2021), we have developed a comprehensive petroleum system modelling (PSM) study by integrating these data and findings (Part 3). Together the studies have resulted in an improved understanding of the hydrocarbon prospectivity of the deep-water areas of the basin. Given the sparsity of data outboard, almost all legacy petroleum system modelling studies have been focused either on the onshore or shallow-water areas of the basin and primarily on their thick Lower Cretaceous depocentres. The limitations of legacy seismic datasets resulted in a high degree of uncertainty in the derivative interpretations used as input into PSM studies. In addition, the paucity and poor quality of data in the deep-water area reduced confidence in the understanding of the basin evolution and spatial distribution of depositional environments through time. The newly acquired 2D seismic survey and reprocessed legacy data, with calibration via several wells across the basin, has improved confidence in our understanding of the tectonostratigraphic evolution of the basin (Part 2; Karvelas et al. 2021). The study presented herein integrates products from the work in Part 2 into a petroleum system model with the primary objective being to better understand the petroleum systems across the deep-water Otway Basin.