From 1 - 10 / 31
  • On 6th July 2006, an intense swarm of earthquake activity began in the Sulu Range, Central New Britain, Papua New Guinea. The earthquakes were felt almost every one to two minutes, 24 hours a day, with modified Mercalli intensities of MM1 to MM4. They were accompanied by unusual vigorous activity in the hot springs southwest of the Sulu Range. Fearing a possible eruption and tsunami, about 1000 locals were evacuated.

  • Heterogeneous distribution of slip during megathrust earthquakes has been shown to significantly affect the spatial distribution of tsunami height in both numerical studies and field observations. This means that tsunami hazard maps generated using uniform slip distributions in their tsunami source models may underestimate tsunami inundation in some locations compared with real events of the same magnitude in the same location. In order to more completely define areas that may be inundated during a tsunami it is important to consider how different possible distributions of slip will impact different parts of the coastline. We generate tsunami inundation maps for the Mentawai Islands, West Sumatra, Indonesia, from a composite suite of possible source models that are consistent with current knowledge of the source region. First, a suite of earthquake source models with randomly distributed slip along the Mentawai Segment of the Sunda Subduction Zone is generated using a k-2 rupture model. From this suite we select source models that generate vertical deformation consistent with that observed in coral palaeogeodetic records of previous ruptures of the Mentawai Segment in 1797 and 1833, minus deformation observed in the 2007 Bengkulu earthquake sequence. Tsunami inundation is then modelled using high resolution elevation data for selected source models and the results compiled to generate a maximum tsunami inundation zone. This method allows us to constrain the slip distribution beneath the Mentawai Islands, where coral palaeogeodetic data is available, while allowing for greater variation in the slip distribution away from the islands, in particular near the trench where large slip events can generate very large tsunami. This method also allows us to consider high slip events on deeper portions of the megathrust between the Mentawai Islands and the Sumatran Mainland, which give greater tsunami inundation on the eastern part of the Mentawai Islands and the west coast of Sumatra compared with near-trench event. By accounting for uncertainty in slip distribution, the resulting hazard maps give a more complete picture of the areas that may be inundated compared with hazard maps derived from a single 'worst case' source model. These maps allow for more robust tsunami evacuation plans to be developed to support immediate community evacuation in response to strong or long-lasting earthquake ground shaking. From the American Geophysical Union Fall Meeting Abstracts

  • The Government of Indonesia has committed to deploying a network of 500 strong-motion sensors throughout the nation. The data from these sensors have the potential to provide critical near-real-time information on the level of ground shaking and potential impact from Indonesian earthquakes near communities. We describe the implementation of real-time ‘ShakeMaps’ within Indonesia's Agency of Meteorology, Climatology and Geophysics (BMKG). These ShakeMaps are intended to underpin real-time earthquake situational awareness tools. The use of the new strong-motion network is demonstrated for two recent earthquakes in northern Sumatra: the 2 July 2013 Mw 6.1 Bener Meriah, Sumatra and the 10 October 2013 Mw 5.4 Aceh Besar earthquakes. The former earthquake resulted in 35 fatalities, with a further 2400 reported injuries. The recently integrated ShakeMap system automatically generated shaking estimates calibrated by BMKG's strong-motion network within 7 min of the Bener Meriah earthquake's origin, which assisted the emergency response efforts. Recorded ground motions are generally consistent with theoretical models. However, more analysis is required to fully characterize the attenuation of strong ground motion in Indonesia.

  • The present study reports on recent developments of the Indonesia Tsunami Early Warning System (InaTEWS), especially with respect to the tsunami modeling components used in that system. It is a dual system: firstly, InaTEWS operates a high-resolution scenario database pre-computed with the finite element model TsunAWI; running in parallel, the system also contains a supra real-time modeling component based on the GPU-parallelized linear long-wave model easyWave capable of dealing with events outside the database coverage. The evolution of the tsunami scenario database over time is covered in the first sections. Starting from the mere coverage of the Sunda Arc region, the current state contains scenarios in 15 fault zones. The study is augmented by an investigation of warning products used for early warning like the estimated wave height (EWH) and the estimated time of arrival (ETA). These quantities are determined by easyWave and TsunAWI with model specific approaches. Since the numerical setup of the models is very different, the extent of variations in warning products is investigated for a number of scenarios, where both pure database scenarios and applications to real events are considered.

  • On the 30th September 2009 a magnitude 7.6 earthquake struck West Sumatra in the Padang and Pariaman regions. It caused widespread damage to buildings and resulted and an estimated 1,117 fatalities. Thankfully the event was not accompanied by a tsunami that could have had additional devastating impacts and a greatly increased mortality. Under its mandate the AIFDR responded to the earthquake event with the objective of deriving an understanding of the factors that had contributed to outcome. It supported a team of Indonesian and international engineers and scientists who collected and analysed damage information that could subsequently be used for future disaster risk reduction in West Sumatra and Indonesia more broadly. The activity was jointly led by the Centre for Disaster Mitigation at the Institut Teknologi Bandung (ITB) and Geoscience Australia. This report provides a background to the region, describes the nature of the earthquake and its impacts, details the survey activity and outlines the significant outcomes that has come from it. Importantly, it makes several recommendations to assist in the regional reconstruction after the event and to guide future development in the Padang region and Indonesia more generally.

  • The Philippine Institute of Volcanology and Seismology (PHIVOLCS) and Geoscience Australia (GA) have developed a long-term partnership in order to better understand and reduce the risks associated with earthquake hazards in the Philippines. The Project discussed herein was supported by the Australian Agency for International Development (AusAID). Specifically, this partnership was designed to enhance the exposure and damage estimation capabilities of the Rapid Earthquake Damage Assessment System (REDAS), which has been designed and built by PHIVOLCS. Prior to the commencement of this Project, REDAS had the capability to model a range of potential earthquake hazards including ground shaking, tsunami inundation, liquefaction and landslides, as well as providing information about elements at risk (e.g., schools, bridges, etc.) from the aforementioned hazards. The current Project enhances the exposure and vulnerability modules in REDAS and enable it to estimate building damage and fatalities resulting from scenario earthquakes, and to provide critical information to first-responders on the likely impacts of an earthquake in near real-time. To investigate this emergent capability within PHIVOLCS, we have chosen the pilot community of Iloilo City, Western Visayas. A large component of this project has been the compilation of datasets to develop building exposure models, and subsequently, developing methodologies to make these datasets useful for natural hazard impact assessments. Collection of the exposure data was undertaken at two levels: national and local. The national exposure dataset was gathered from the Philippines National Statistics Office (NSO) and comprises basic information on wall type, roof type, and floor area for residential buildings. The NSO census dataset also comprises crucial information on the population distribution throughout the Philippines. The local exposure dataset gathered from the Iloilo City Assessors Office includes slightly more detailed information on the building type for all buildings (residential, commercial, government, etc.) and appears to provide more accurate information on the floor area. However, the local Iloilo City dataset does not provide any information on the number of people that occupy these buildings. Consequently, in order for the local data to be useful for our purposes, we must merge the population data from the NSO with the local Assessors Office data. Subsequent validation if the Iloilo City exposure database has been conducted through targeted foot-based building inventory surveys and has allowed us to generate statistical models to approximate the distribution of engineering structural systems aggregated at a barangay level using simple wall and roof-type information from the NSO census data. We present a comparison of the national and local exposure data and discuss how information assembled from the Iloilo City pilot study - and future study areas where detailed exposure assessments are conducted - could be extended to describe the distribution of building stock in other regions of the Philippines using only the first-order national-scale NSO data. We present exposure information gathered for Iloilo City at barangay level in a format that can be readily imported to REDAS for estimating earthquake impact.

  • Probabilistic seismic hazard map of Papua New Guinea, in terms of Peak Ground Acceleration, is developed for return period of 475 years. The calculations were performed for bedrock site conditions (Vs30=760 m/s). Logic-tree framework is applied to include epistemic uncertainty in seismic source as well as ground-motion modelling processes. In this regard two source models, using area source zones and smoothed seismicity, are developed. Based on available geological and seismological data, defined seismic sources are classified into 4 different tectonic environments. For each of the tectonic regimes three Ground Motion Prediction Equations are selected and used to estimate the ground motions at a grid of sites with spacing of 0.1 degree in latitude and longitude. Results show high level of hazard in the coastal areas of Huon Peninsula and New Britain/ Bougainville regions and relatively low level of hazard in the southern part of the New Guinea highlands block. In Huon Peninsula, as shown by seismic hazard disaggregation results, high level of hazard is caused by modelled frequent moderate to large earthquakes occurring at Ramu-Markham Fault zone. On the other hand in New Britain/Bougainville region, the geometry and distance to the subduction zone along New Britain Trench mainly controls the calculated level of hazard. It is also shown that estimated level of PGAs is very sensitive to the selection of GMPEs and overall the results are closer to the results from studies using more recent ground-motion models.

  • The Assessment of Tropical Cyclone Risks in the Pacific Region project represents a collaboration between DIICCSRTE and Geoscience Australia with PCRAFI and AIR Worldwide. Building on the expertise of each organisation, the project will deliver an assessment of the financial risks to buildings, infrastructure and agriculture arising from tropical cyclones (TCs) under current and future climate regimes. This extends previous risk assessments undertaken by incorporating the influence of climate change on the hazard (TCs) into the assessment process. The output of this study is a set of peril matrices, which detail the relative change in parameters describing TC behaviour: e.g. annual mean frequency, mean maximum intensity and mean latitude of genesis. The relative changes are evaluated as the fractional change between TC behavior in current climate GCM simulations and future climate GCM simulations.

  • Papua New Guinea (PNG) lies in a belt of intense tectonic activity that experiences high levels of seismicity. Although this seismicity poses significant risks to society, the Building Code of PNG and its underpinning seismic loading requirements have not been revised since 1982. This study aims to partially address this gap by updating the seismic zoning map on which the earthquake loading component of the building code is based. We performed a new probabilistic seismic hazard assessment for PNG. Among other enhancements, for the first time together with background sources, individual fault sources are implemented to represent active major and microplate boundaries in the region to better constrain the earthquake-rate and seismic-source models. The seismic-source model also models intraslab, Wadati-Benioff zone seismicity in a realistic way using a continuous slab volume to constrain the finite ruptures of such events. The results suggest a high level of hazard in the coastal areas of the Huon Peninsula and the New Britain–Bougainville region, and a relatively low level of hazard in the southern part of the New Guinea Highlands Block. In comparison with the seismic zonation map in the current design standard, it can be noted that the spatial distribution used for building design does not match the bedrock hazard distribution of this study. In particular, the high seismic hazard of the Huon Peninsula in the revised assessment is not captured in the current building code of PNG. We will also discuss how the seismic hazard map of PNG is being used to underpin its building code, including what steps have been taken by GA together with the Government of PNG to promote uptake of the new hazard map by PNG’s earthquake engineering community.