From 1 - 1 / 1
  • The Houtman Sub-basin geophysical modelling study is an integrated geological and geophysical interpretation of the GA-349 seismic survey. The key aims for the study were to improve the understanding of the crustal architecture of the Houtman Sub-basin and the distribution and thickness of magmatic rocks. The Houtman Sub-basin is a largely unexplored offshore depocentre in the northern Perth Basin on the western margin of Australia. It formed during two separate rifting episodes (Early- to Mid-Permian, Early Jurassic to Early Cretaceous) and may contain up to 19 km of sediment. The northern Houtman Sub-basin contains extensive breakup-related sill and dyke complexes, related to both the adjacent volcanic province of the Wallaby Plateau and the Wallaby Zenith Transform Margin (WZTM). New 2D seismic reflection data obtained in 2014/15 (GA-349) is being used to re-assess the petroleum prospectivity of this frontier basin to underpin the possible future release of exploration acreage. A full understanding of petroleum prospectivity requires a clear picture of sediment thickness, the nature of basement, and the distribution of magmatic rocks, all of which influence the maturation of hydrocarbons and ultimately prospectivity. Geoscience Australia seismic survey (GA-310) and marine sampling survey (GA-2476) conducted in 2008 and 2009 acquired a total of about 26,000 km of new gravity and magnetic data. This new gravity and magnetic data has been integrated and levelled with existing data, both offshore and onshore, to produce unified gravity and magnetic datasets for use in constraining regional tectonics, basin structure and petroleum prospectivity. The purpose of this study is to use potential field modelling to: a) validate seismic interpretation of crustal structure (in depth), including Moho depth and depth to top crystalline basement; b) model density variations within the sedimentary section; c) model density and magnetic susceptibility variations within basement with an interpretation of basement composition (if possible) and; d) investigate the depth, extent and thickness of intrabasinal magmatic rocks identified on seismic data.